

深圳市矽源特科技有限公司

ShenZhen ChipSoureTek Technology Co.,Ltd.

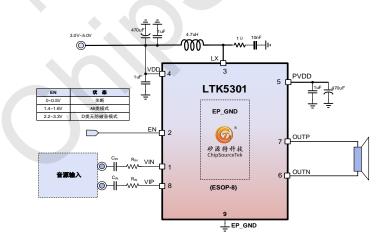
LTK5301 内置同步升压_单声道G类音频功率放大器

■ LTK5301概述

LTK5301 是一款内置同步 BOOST 升压音频放 大器, 在 4Ω 负载下能提供高达 6.7W 输出功率。 LTK5301 可以通过外部调节升压电压档位,适 用各种应用条件,同时 EN 脚一线脉冲控制功能, 可控制单个管脚使芯片进入 D 类普通模式、D 类防破音模式、AB 类模式、关断模式,达到节 省 IO 口的目的,进一步为客户节省成本。 LTK5301 在 AB 类模式可以完全消除 EMI 干扰。 在 D 类放大器模式下可以提供高于极高的效率, 新型的无滤波器结构可以省去传统 D 类放大器 的输出低通滤波器,LTK5301 独有的 DRC (Dynamic range control) 技术,降低了大功率 输出时,由于波形切顶带来的失真,相比同类产 品, 动态反应更加出色。

■ LTK5301应用

- 收音机、扩音器
- 导航仪、便携游戏机、玩具类
- 拉杆音箱


LTK5301特性

- 外部应用无需二极管
- 升压电压两档选择 6.5V 或 7.1V
- 节省 IO 口的一线脉冲控制
- 两种防破音模式
- FM 模式无干扰
- 超低底噪、超低失真
- 10% THD+N, VBAT=4.2V, 4Ω +33uH 输出功率达到 6.7W
- 1% THD+N, VBAT=4.2V, 4Ω +33uH 输出功率达到 5.1W
- 10% THD+N, VBAT=3.7V, 4Ω +33uH 输出功率达到 6.3W
- 1% THD+N, VBAT=4.7V, 4Ω +33uH 输出功率达到 4.8W
- 过温保护、短路保护
- 封装形式 ESOP-8

LTK5301封装

芯片型号	封装类型	封装尺寸
LTK5301	ESOP-8	

■ LTK5301典型应用图

1.PVDD管脚的1uF和470uF务必靠近芯片管脚放置,避免过孔走线,且下地的GND以最短路径回到芯片GND; 2.LX管脚电感务必靠近LX放置,该网络RC同样靠近LX管脚,电容下地的GND以最短路径回到芯片GND; 3.VDD走线从电源输入的470uF大电容正极连接,并使用一颗小电容1uF靠近VDD管脚放置;

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com E-mail: Sales@ChipSourceTek.com Tony.Wang@ChipSourceTek.com

■ LTK5301管脚说明及定义

管脚编号	管脚名称	10	功能		
1	VIN	1	输入反相端		
2	EN		芯片控制脚位,低电平关断,高电平打开,一线脉冲控制		
3	LX	Р	BOOST升压开关切换脚,接电感		
4	VDD	Р	模拟电源输入,接电池		
5	PVDD	I	升压电源端,接升压滤波电容		
6	OUTN	PO	输出反相端		
7	OUTP	PO	输出同相端		
9	GND_EP	Р	芯片底部露铜接地端, 电源负端		

■ LTK5301最大极限值

参数名称	符号	数值	单位
供电电压	V_{DD}	5.5(MAX)	V
存储温度	T _{STG}	- 65∼150	Ç
结温度	TJ	160	Ç
负载	R _L	≥3	Ω

■ LTK5301推荐工作范围

参数名称	符号	数值	单位
供电电压	V_{DD}	3.0∼5.0V	V
工作环境温度	T_{STG}	-40 \sim 85	${\mathfrak C}$
结温度	T _J	160	Ç

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com

■ LTK5301 ESD 信息

参数名称	符号	数值	单位
人体静电	НВМ	±2000	V
机器模型静电	CDM	±300	V

■ LTK5301基本电气特性

A_V=20dB. T_A=25℃. 无特殊说明的项目均是在VDD=3.7V.4Ω+33uH条件下测试:

Av=20dB, T _A =25 C, 尤特殊说明的项目均是在VDD=3.7V, 4Ω+33uH条件下测试:							
描述	符号	测试条件		最小值	典型值	最大值	单位
静态电流	I _{DD}	VBAT =3.7V,D类		-	21	-	mΑ
		VBAT =3.7V,AB类		$X\Lambda$	3	\- 1	mΑ
关断电流	I _{SHDN}	VBAT	-	1	2	uA	
静态底噪	Vn	VBAT=3.7V,A	V=20DB,Awting		200		uV
D类频率	Fsw	VBAT	Γ=3.7V		500		kHz
升压LX频率	F_{LX}	VBAT	Γ=3.7V		833		kHz
输出失调电压	Vos	V _{IN}	=0V		10		mV
启动时间	T _{start}	Vdd	=3.7V		265		ms
增益	Av	D类模式	, R _{IN} =36k		≈20		dB
电源关闭电压	Vdd _{EN}		- X		<2.0		V
电源开启电压	Vdd _{open}				>2.8		V
过温保护	O _{TP}				180		$^{\circ}\!\mathbb{C}$
静态导通电阻	D	I _{DS} =0.5A	P_MOSFET		150		mΩ
押心 守世电阻	R _{DSON}	V _{GS} =4.2V	N_MOSFET		120		
内置输入电阻	Rs)	6.5K		kΩ
内置反馈电阻	R _f				416K		kΩ
效率	ης	VBAT=4.2V,PVD	D=7.1V,PO=6.7W		82		%
高电平	H _{vsel}	3-4	3-4.2V		>3		V
低电平	L _{vsel}	3-4.2V			<0.5		V
关断电压	SD _{EN}	3-4	1.2V		<0.5		
AB类模式	AB _{EN}	3-4	1.2V	1.4	1.5	1.6	V
D类模式	D _{EN}	3-4	1.2V	2.2	3	3.3	

● Class_D功率

A_V=20dB, T_A=25℃,无特殊说明的项目均是在VDD=4.2V,4Ω条件下测试:

参数	符号	测试电压	测试条件	典型值	单位
		>	$f=1kHz,R_L=3\Omega, THD+N=10\%,$	8.2	
输出功率		VDD=4.2V,	$f=1kHz,R_L=3\Omega, THD+N=1\%,$	6.2	
	Po	PVDD=7.1V	$f=1kHz,R_L=4\Omega, THD+N=10\%,$	6.7	
			$f=1kHz,R_L=4\Omega, THD+N=1\%,$	5.1	W
					"
总谐波失真加噪声	THD+N	V _{DD} =4.2	2V ,PVDD=7.1V,P ₀ =1.6W,R _L =4Ω	0.041	%

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com

深圳市矽源特科技有限公司 ShenZhen ChipSoureTek Technology Co.,Ltd.

LTK5301性能特性曲线

特性曲线测试条件(T_A=25℃)

描述	测试条件	编号
Input Amplitude VS. Output Amplitude	VBAT=4.2V,RL=4Ω+33uH ,Class_D	图1
Output Power VS. THD+N _Class_D	RL=4Ω+33uH,A _V =20dB,Class_D	图2
Output Power VS.THD+N_Class_AB	RL=4Ω,A _V =20dB , Class_AB	图3
Frequency VS.THD+N	VBAT=4.2V,RL=4Ω,A _V =20dB,PO=1.5W,Class_D_Awting	图4
Input Voltage VS.Power Crrent	VBAT=3.0V-5V,Class_D	图5
Input Voltage VS. Maximum Output Power	RL=4Ω+33uH,THD=10%, Class_D	图6
Frequency Response	VBAT=4.2V,RL=4Ω,Class_D	图7
Output Power VS Efficiency	VBAT=4.2V,RL=4Ω,Class_D	图8
Boost Limiting VS.Ocpset Resistor	VBAT=4.2V	图9

特性曲线图(T_A=25℃)

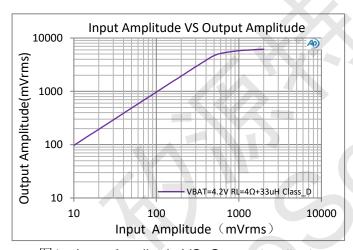


图1: Input Amplitude VS. Output Amplitude

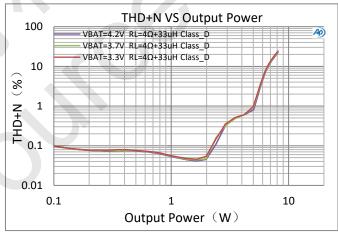


图2: THD+N VS .Output Power Class_D

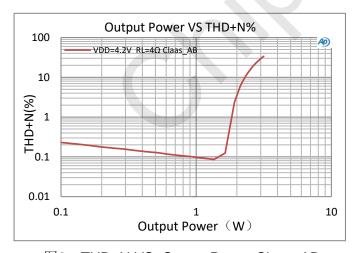


图3: THD+N VS. Output Power Class_AB

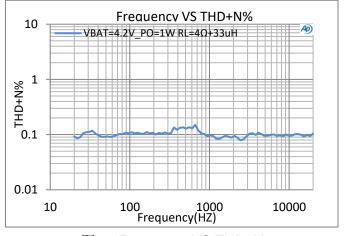


图4: Frequency VS.THD+N

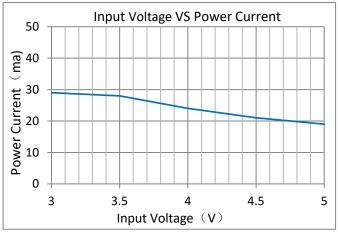


图5: Power Crrent VS. Suppy Voltage

图6: Input Voltage VS. Maximum Output Power

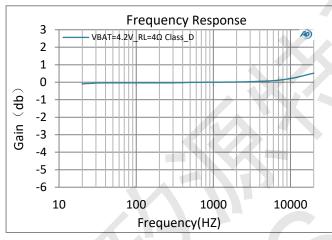


图7: Frequency Response

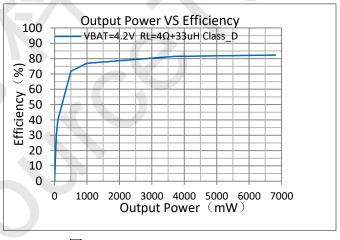
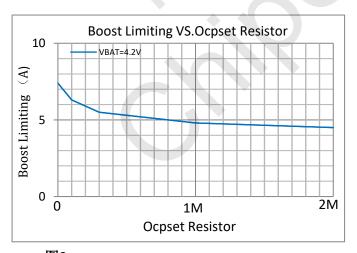
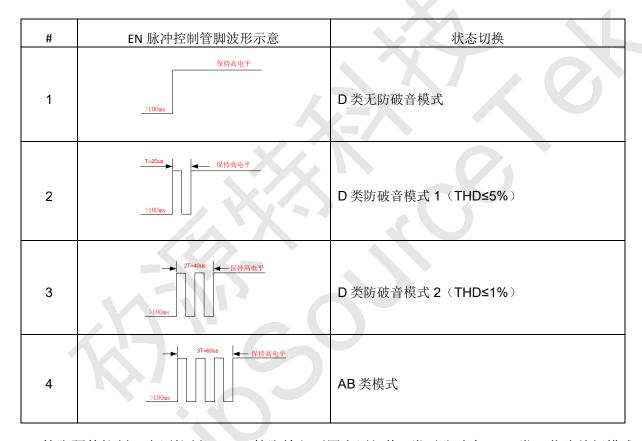


图8: Output Power VS Efficiency




图9: Boost Limiting VS.Ocpset Resistor

■ LTK5301应用说明

● EN管脚控制

LTK5301有两种控制方式:软件控制(一线脉冲)和硬件控制(高/低电平控制),一线脉冲控制的好处是可以节省主控IO,仅使用一个IO口即可切换功放多种工作模式,且电源上电后需要对EN管脚进行复位动作,即为低100ms后再进入到对应模式。

EN管脚软件控制(一线脉冲): EN管脚输入不同脉冲信号切换功放:D类无防破音模式、AGC1 (AGC1: THD≤5%)、D类AGC2 (AGC2: THD≤1%)、AB类模式,具体控制信号如下图。

EN管脚硬件控制(电压控制): EN管脚输入不同电压切换D类无防破音、AB类、芯片关闭模式。注: 硬件控制时从低到高开启时间<1ms

EN管脚	芯片状态
<0.5V	关闭状态
1.4-1.6V	AB类模式
2.2-3.3V	D类无防破音升压模式状态

功放增益控制

D类模式时输出驱动信号为PWM信号, AB类模式输出放大的模拟信号, 其增益均可通过R_{IN}调节。

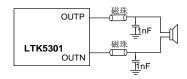
$$A_V = 20log * \frac{R_f}{6.5k + R_{IN}}$$

Av为增益,通常用dB表示,上述计算结果单位为倍数、20Log倍=dB。 RIN电阻的单位为kΩ、416kΩ为内部反馈电阻(R_F), 6.5kΩ为内置串联电阻(R_S),RIN由用户 根据实际供 电电压、输入幅度、和失真度定义。 如RIN=36k时,≈9.79倍、A_V≈20dB 输入电容(CIN)和输入电阻(RIN)组成高通滤波器,其截止频率为:

$$f_c = \frac{1}{2\pi * (R_{IN} + 6.5k) * C_{IN}}$$

Cin电容选取较小值时,可以滤除从输入端耦合入的低频噪声,同时有助于减小开启时的POPO

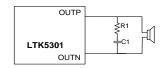
BOOST电感

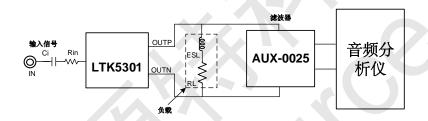

电感是BOOST电路中最重要的元器件,电感选择不合适会对BOOST电路的影响非常大。选择的电感一 定要有足够大的额定电流和饱和电流。并且电感的DRC(直流电阻)越小越好。电感的DRC要小于50mΩ. 饱和电流不小于5A.对于电感量的选择电感量小会有较大的电流纹波,但是能提供较好的瞬态响应,同时会 降低BOOST电路的工作效率。而选用电感量大的是可以降低电流纹波,同时对于工作效率会有所提高,但 瞬态响应会差,所以让功放工作在正常状态,要选用合适的电感量,推荐使用4.7uH的电感。

BOOST输出电容

LTK5301是BOOST升压功放,需要足够的电源电容以保证输出电压稳定,纹波小和噪音小。PVDD端 的滤波电容最重要,其次是VBAT电容, PVDD端的电容是用来稳定升压电压降低输出电压纹波,并且保证 PWM开关控制的工作正常,这个电容对BOOST输出电压的纹波和稳定性有很大影响,可以选择一个大电容再 并联一小陶瓷电容,大电容的值在470uF以上,小的陶瓷电容在0.1UF-10uF之间,尽量靠近管脚放置, VBAT管 脚建议放置一个大电容和一个陶瓷电容来更好的滤波,典型值470uF并联1uF,放置在尽可能靠近器件 VBAT管脚处,可以得到最好的性能

EMI处理


对于输出走线较长或靠近敏感器件时,建议加上磁珠和电容,能有效减小EMI。器件靠近芯片放置。

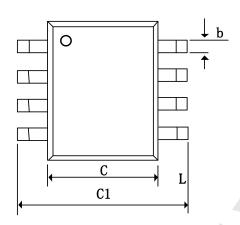

● RC缓冲电路

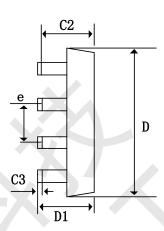
如喇叭负载阻抗值较小时,建议在输出端并一个电阻和一个电容来吸收电压尖峰,防止芯片工作异常。 电阻推荐使用: 2Ω-5Ω, 电容推荐: 500pF-10nF。

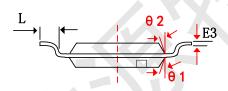
■ LTK5301测试方法

在测试D类模式时必须加滤波器测试,AUX-0025为滤波器。为了测试数据精准并符合实际应用,负载端串联一个电感,模拟实际喇叭的寄生电感效应。

■ LTK5301 PCB设计注意事项


- ▶ PVDD 端按负载选用 470uF 或 1000uf 插件电容和 1uF 的陶瓷电容并联,电容尽量靠近 PVDD 管脚。 VBAT 端同样选用 470uF 插件电容和 1uF 的陶瓷电容并联,电容尽量靠近电感放置。
- ▶ 供电脚(LX、PVDD)走线尽量粗,最好使用敷铜连接网络。
- ▶ 输入电容(Cin)、输入电阻(Rin)尽量靠近功放芯片管脚放置,走线最好使用包地方式,可以有效的抑制其他信号耦合的噪声。
- ▶ LTK5301 的底部露铜散热片是芯片唯一接地点,必须与 PCB 设计 GND 连接,因芯片底部和芯片脚位高度存在 0.05mm(±0.05mm)的误差站高,在贴片时需要注意贴合度,并抽测芯片底部与 PCB 露铜部分完全贴合。LTK5301 输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度需在 0.4mm 以上。


■ LTK5301问题解决方向及建议


- ➤ 实际功率测试和规格书描述的参数差异大时:建议检查 PCB 板供电走线是否够粗,接触阻抗是否过大、电源电流能力是否足够、是否存在电源压降以及元器件电流不够导致功率不足。
- ▶ 播放存在卡顿现象时:检查电池放电能力、更换更大电流电池以及按上述检查项检查系统的阻抗和元器件、检查电容器件位置放置是否过远,大电流以及大电流路径的 GND 是否有单个过孔存在。
- ➤ FM 收音台少:确认检查功放芯片是否切换到 AB 类模式,使用示波器测量输出确认工作状态。
- ▶ POPO 音较大时:使用示波器检查主控的 MUTE 开启时序和切换时序是否正确。
- ➤ EN 切换模式不能进入对应模式时:检查脉冲信号是否符合说明要求。

■ LTK5301芯片封装 ESOP-8

<u>₽</u> \$\$	Dimensions In Millimeters		Dimensions In Inches			
字符	Min	Nom	Max	Min	Nom	Max
b	0.33	0.42	0.51	0.013	0.017	0.020
С	3.8	3.90	4.00	0.150	0.154	0.157
C1	5.8	6.00	6.2	0.228	0.235	0.244
C2	1.35	1.45	1.55	0.053	0.058	0.061
C3	0.05	0.12	0.15	0.004	0.007	0.010
D	4.70	5.00	5.1	0.185	0.190	0.200
D1	1.35	1.60	1.75	0.053	0.06	0.069
е	1.270(BSC)			0.050	(BSC)	
L	0.400	0.83	1.27	0.016	0.035	0.050

声明:

深圳市砂源特科技有限公司保留在任何时间、不另行通知的情况下对规格书的更改权。 深圳市砂源特科技有限公司提醒:请务必严格应用建议和推荐工作条件使用。如超出推荐工作条件以及不按应用建议使用,本公司不保证产品后续的任何售后问题.