

TC5020FJ 16 路恒流输出 LED 驱动芯片

一、TC5020FJ产品概述

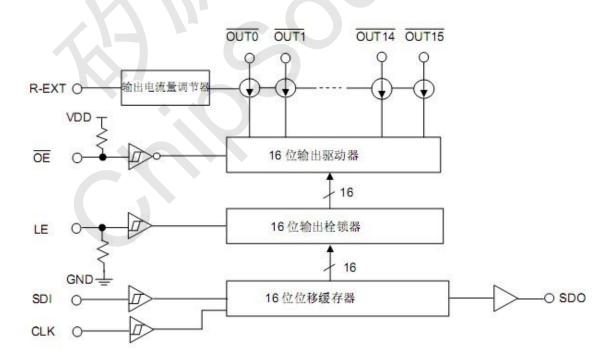
TC5020FJ 是 LED 显示面板设计的驱动 IC,它内建的 CMOS 位移缓存器与栓锁功能,可以将串行的输入数据转换成平行输出数据格式。TC5020FJ 的输入电压范围值为 $3.3\,\mathrm{V}^{\sim}5\,\mathrm{V}$,提供 $16\,\mathrm{Che}$ 个电流源,可以在每个输出级提供 $3^{\sim}36\,\mathrm{mA}$ 定电流量以驱动 LED;且单一颗 IC 内输出通道的电流差异小于 $2\%0\,\mathrm{I}_{\mathrm{out}}=23.8\,\mathrm{mA}$; $\pm 2.5\%0\,\mathrm{I}_{\mathrm{out}}=3\,\mathrm{mA}$; 多颗 IC 间的输出电流差异小于 $\pm 3\%$,电流随着输出端耐受电压(V_{DS})变化,控制在每伏特 0.1%;且电流受供给电压(V_{DD})、环境温度的变化也被控制在 1%。使用者可以经由选用不同阻值的外接电阻器来调整 TC5020FJ 各输出级的电流大小,藉此机制,使用者可精确地控制 LED 的发光亮度。

TC5020FJ 保证输出级可耐压 11 伏特,因此可以再每个输出端串接多个 LED。此外,TC5020FJ 亦提供 25MHz 的 高时钟频率输入以满足系统对大量数据传输上的需求。

二、TC5020FJ特点

- ▶ 16 路等电流输出通道
- ▶ 输出电流设定范围:
 - 3~36mA×16@V₀□=5V 路恒定电流输出
 - 3~20mA×16@V□=3.3V 路恒定电流输出
- ▶ 电流精度
 - 通道间最大差异值: $< \pm 1.5\%$ (一般值); $< \pm 2.0\%$ (最大值) 芯片间最大差异值: $< \pm 1.5\%$ (一般值); $< \pm 3.0\%$ (最大值)
- ▶ 快速输出电流响应(最小值):最小脉宽 = 35ns(保持输出一致性的条件下)
- ▶ 利用一个外接电阻,可设定16个驱动口的电流输出值;
- ▶ 具有施密特触发器输入特性;
- ▶ 高速率数据传输,可达 25MHz;
- ➤ 工作电压范围: 3.3V to 5V;
- ▶ 极低的待机电流与工作电流(即 VDD 电流);
- 集成输出通道过冲抑制电路
- ➤ 采用 SSOP-24 封装形式 (宽体: e=1.0mm: 窄体: e=0.635mm)
- ▶ 应用于 LED 显示屏, 可变标志牌, LED 交通信号指示等;

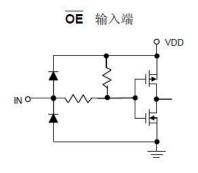
TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com 第 1 页 共 12 页

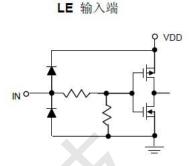


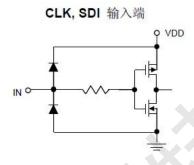
ShenZhen ChipSourceTek Technology Co.,Ltd.

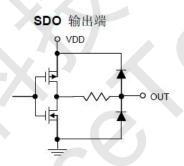
三、TC5020FJ引脚定义及说明

	1	引脚序号	引脚定义	引脚名称
GND 1	24 VDD	1	GND	芯片接地引脚
SDI 2	23 REXT	2	SDI	输入到移位寄存器的串行数据输入端
CLK 3	22 SDO	3	CLK	时钟信号输入端
L€ 4	21 ŌE 20 ŌUT15	4	LE	数据锁存输入端 LE 高电平时,数据被传入 到锁存器中。
OUT1 6	19 OUT14	5-20	OUT0—OUT15	恒电流输出端
OUT2 7 OUT3 8	18 OUT 13 17 OUT 12 16 OUT 11	21	ŌĒ	输出使能信号输入端,并在下降沿处缓存数据 OE 高电平时,关断 OUT0-OUT15 OE 低电平时,打开 OUT0-OUT15
OUT4 9 OUTS 10	16 OUT11	22	SDO	串行数据输出端,可接到下一个驱动芯片的 SDI端
OUT6 11 OUT7 12	14 OUT9 13 OUT8	23	REXT	外接调节电阻的输出端,可调节所有通道的 输出电流大小
		24	VDD	5V 电源输入端

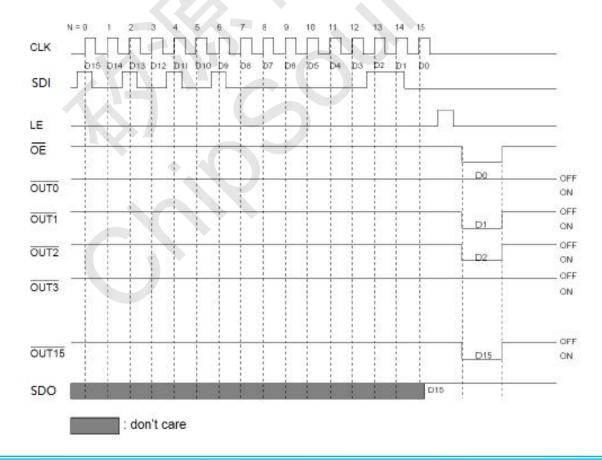

四、TC5020FJ内部框图






ShenZhen ChipSourceTek Technology Co.,Ltd.

五、TC5020FJ I/O 等效电路



六、TC5020FJ时序图

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com 第 3 页 共 12 页

ShenZhen ChipSourceTek Technology Co.,Ltd.

七、TC5020FJ真值表

CLK	LE	OE/	SDI	OUTO~OUT15	SDO
	Н	L	Dn	Dn Dn-1 Dn-14 Dn-15	Dn−15
	L	L	Dn+1	不变	Dn-14
£	Н	L	Dn+2	Dn+2 Dn+1 Dn-12 Dn-13	Dn-13
7_	X	L	Dn+3	Dn+2 Dn+1 Dn-12 Dn-13	Dn-13
₹_	X	Н	Dn+3	使 LED 不亮	Dn-13

八、TC5020FJ绝对最大额定值(TA=25℃)

特性		`符号	值	单位
电源电压		V _{DD}	0~7.0	V
输入端电压		V _{IN}	-0.2~VDD+0.2	V
输出端电流	AVA	I_{out}	36	mA/Channel
输出端耐压		V _{out}	-0.2 [~] 11.0	V
接地端电流总和		${ m I}_{ ext{GND}}$	510	mA
	SOP24		1.92	
 功率耗散	SSOP24	D	1.42	W
- 均 平 札取	SS0P24-1.0	P_{D}	1.74	W
	SDIP24		1.95	
	SOP24		65	
热阻值	SSOP24	D	88	°C/W
7.87911111111111111111111111111111111111	SS0P24-1.0	$R_{\mathrm{TH(j-a)}}$	75	[C/W
SDIP24			64	
芯片工作时环境温度		$T_{\scriptscriptstyle \mathrm{OPR}}$	-40 [~] +85	$^{\circ}$ C
芯片存放时环境温度		$T_{ m STG}$	-55 [~] +150	$^{\circ}$ C

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com
E-mail: Sales@ChipSourceTek.com
Tony.Wang@ChipSourceTek.com

第 4 页 共 12 页

ShenZhen ChipSourceTek Technology Co.,Ltd.

九、TC5020FJ直流特性(VDD=5.0V)

参	 数	代表符号	量	测条件	最小值	典型值	最大值	单位
电源	电压	$V_{\scriptscriptstyle DD}$			4.5	5.0	5. 5	V
输出端面	対受电压	V _{DS}	OUT	0~0UT15			11.0	V
		$I_{ ext{out}}$	参考直流特	持性的测试电路	3		36	mA
输出站	尚 电流	${ m I}_{ ext{OH}}$		SD0			-1.0	mA
		${ m I}_{\scriptscriptstyle m OL}$		SD0			1.0	mA
输入端电压	高电位位准	V_{IH}	Ta=-	-40 [~] 85℃	0. 7*V _{DD}		$V_{\scriptscriptstyle DD}$	V
棚八畑七瓜	低电位位准	$V_{\scriptscriptstyle \mathrm{IL}}$	Ta=-	-40 [~] 85℃	GND		0. 3*V _{DD}	V
输出端	漏电流	$I_{ ext{OH}}$	$V_{\scriptscriptstyle DS}$	=11. OV			0.5	uA
输出端电压	SD0	$V_{\scriptscriptstyle OL}$	I _{oL} :	=+1. OmA			0.4	V
相山畑屯瓜	300	$ m V_{OH}$	I ^{oH} :	=-1. OmA	4.6	<i>></i>		V
输出目	 1	Iout1	V _{DS} =1. OV	$R_{\rm ext}=6000 \Omega$) /	3. 13	-	mA
电流值	扁移量	dIout1	IoL=3.13mA V _{DS} =1.0V	$R_{\rm ext}=6000 \Omega$		±1.5	±2.5	%
输出目	 追流 2	Іоит2	V _{DS} =1. OV	$R_{\rm ext}$ =735 Ω	+	25. 2		mA
电流保	扁移量	dIout2	I _{OL} =25. 2mA V _{DS} =1. 0V	$R_{\rm ext} = 735 \Omega$		±1.5	±2.5	%
电流偏移量 v	rs. 输出电压	%/dVDS	输出电压	$\pm = 1.0^{\circ} 3.0 \text{V}$	7	±0.1		%/V
电流偏移量 v	rs. 电源电压	%/dVDD	电源电压	\pm =4.5°5.5V			±1.0	%/V
Pull-u	p 电阻	R _{IN} (up)		OE	50	100	150	КΩ
Pull-do	wn 电阻	Rin (down)		LE		150	225	КΩ
		$I_{DD}(off)1$	Rext=未接, OU	UTO ~OUT15 =Off		2.6		
	OFF	I _{DD} (off)2	$R_{\rm ext}$ =1250 Ω , Ω	OUTO ~OUT15 =Off		5. 5		
电压源输出电	且流	I _{DD} (off)3	R _{ext} =625 Ω, OUTO ~OUT15 =Off			7		mA
	ON	I _{DD} (on) 1	$R_{\rm ext}=1250\Omega$,	OUTO ~OUT15 =On		5. 5		
	ON	I _{DD} (on) 2	$R_{\rm ext}=625\Omega$, (OUTO ~OUT15 =On		7		

● 直流特性 (V_{DD}=3.3V)

参	数	代表符号 量测条件		最小值	典型值	最大值	单位
电源	电压	$V_{\scriptscriptstyle DD}$		3.0	3. 3	4.5	V
输出端面	付受电压	V_{DS}	OUTO~OUT15			11.0	V
		${ m I}_{ ext{OUT}}$	Ta=-40~85℃	3		20	mA
输出站		${ m I}_{ m OH}$	Ta=-40~85℃			-1.0	mA
		${ m I}_{\scriptscriptstyle m OL}$	SD0			1.0	mA
输入端电压	高电位位准	V_{IH}		0. 7*V _{DD}		$V_{\scriptscriptstyle DD}$	V
柳八垧电压	低电位位准	$V_{\scriptscriptstyle \mathrm{IL}}$		GND		0. 3*V _{DD}	V

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com 第 5 页 共 12 页

ShenZhen ChipSourceTek Technology Co.,Ltd.

输出端漏	 电流	$I_{ ext{OH}}$	$V_{\scriptscriptstyle m DS}$	=11. OV			0.5	uA
炒山岩市区	CDO	V_{oL}	I _{oL}	=+1. OmA			0.4	V
输出端电压	SDO	V _{OH}	I _{OH}	=-1. OmA	2.9			V
输出电流	. 1	Iout1	V _{DS} =1. OV	R _{ext} =6000 Ω		3. 13		mA
电流偏移	量	dIout1	I _{OL} =3.13mA V _{DS} =1.0V R _{ext} =6000 Ω			±1.5	±2.5	%
输出电流	2	Іоит2	V _{DS} =1. OV	$R_{\rm ext}$ =735 Ω		25.2		mA
电流偏移	量	dIout2	IoL=25. 2mA VDS=1. OV	$R_{\rm ext} = 735 \Omega$		±1.5	±2.5	%
电流偏移量 vs.	输出电压	%/dVds	输出电点	玉=1.0~3.0V	<u> </u>	± 0.1		%/V
电流偏移量 vs.	电源电压	%/dVdD	电源电点	玉=3.0~3.6V			±1.0	%/V
Pull-up ⊧	1阻	R _{IN} (up)		OE	50	100	150	КΩ
Pull-down	电阻	Rin (down)		LE	75	150	225	КΩ
		I _{DD} (off) 1	Rext=未接,OU	UTO ~OUT15 =Off		2. 2		
OFF		I _{DD} (off)2	$R_{\rm ext}$ =1250 Ω , (OUTO ~OUT15 =Off		4. 8		
电压源输出电流		I _{DD} (off)3	$R_{\text{ext}}=625 \Omega$, 0	UTO ~OUT15 =Off	7	6. 2		mA
	ON	I _{DD} (on) 1	$R_{\rm ext}=1250 \Omega$,	OUTO ~OUT15 =On		4.8		
	OIN	I _{DD} (on) 2	$R_{\rm ext}=625 \Omega$, (OUTO ~OUT15 =On		6. 2		

十、TC5020FJ动态特性(V_{DD}=5.0V)

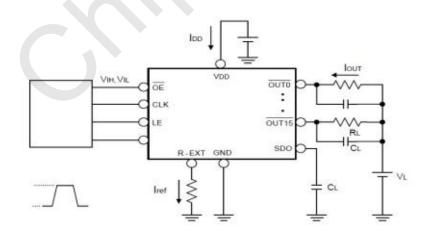
特性		符号	测试条件	最小值	典型值	最大值	单位
CLK-OUT		tPLH1			35	70	ns
CLK-00		tPHL1			35	70	ns
CLK-SI	20	tPLH2			35	70	ns
CLK SI	50	tPHL2			35	70	ns
OE-OU	Т	tPLH3			15	30	ns
OE OO		tPHL3			25	50	ns
	CLK	tW(CLK)	VDD=5. 0V	20			ns
脉波宽度	LE/	tW(L)	VDS=1. 0V	20			ns
	OE/	tW(OE)	VIH=VDD VIL=GND	50	100		ns
LE的 Hold Time		tH(L)	Rext=930 Ω	30			ns
LE的 Setup Time		tSu(L)	VL=4.5V	5			ns
SDI 的 Hold Time		th(D)	RL=162 Ω CL=10pF	5			ns
SDI 的 Setup Time		tsu(D)		3			ns
CLK 讯号的最大爬升时间		tr				500	ns
CLK 讯号的最大下降时间		tf				500	ns
SDO 的爬升时间		tr,SDO			10		ns

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com
E-mail: Sales@ChipSourceTek.com
Tony.Wang@ChipSourceTek.com

第6页共12页

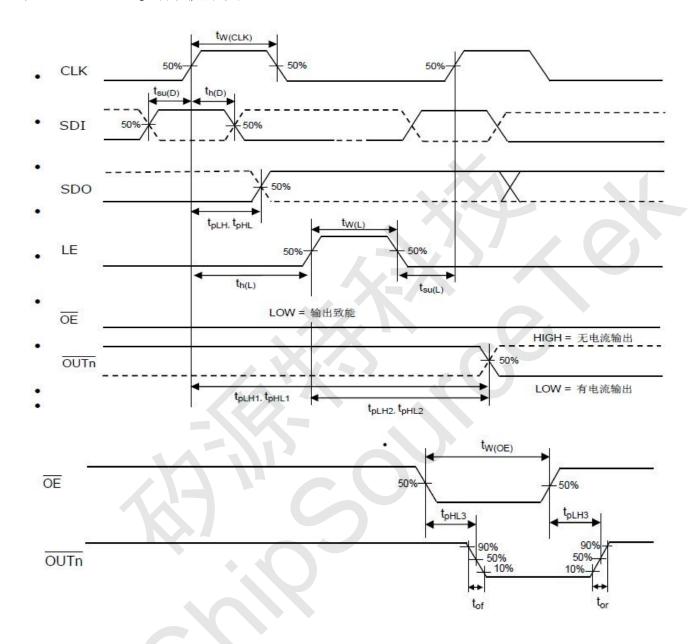
ShenZhen ChipSourceTek Technology Co.,Ltd.


SDI 的下降时间	Tf, SDO		10	 ns
电流输出埠的电位爬升时间	tor		35	 ns
电流输出埠的电位下降时间	tof		35	 ns

^{*}此值之条件为,输出通道保持一致响应条件下的最短 OE。

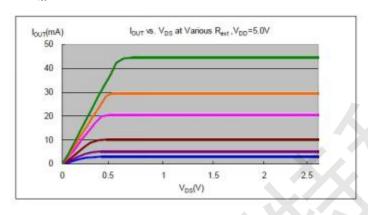
● 动态特性 (VDD=3.3V)

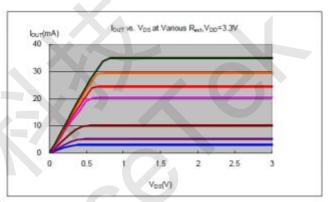
特性		符号	测试条件	最小值	典型值	最大值	单位
CLK-OUT		tPLH1			40	80	ns
CLK-00	J I	tPHL1			40	80	ns
CLK-SI	00	tPLH2			40	80	ns
CLK SI		tPHL2			40	80	ns
OE-OU	Т	tPLH3			20	40	ns
OE 00	1	tPHL3			30	60	ns
	CLK	tW(CLK)		20			ns
脉波宽度	LE	tW(L)	VDD=3.3V	20	_		ns
	OE	tW(OE)	VDS=1.0V VIH=VDD VIL=GND Rext=930Ω VL=3.0V	50	100		ns
LE 的 Hold Time		tH(L)		30	—		ns
LE的 Setup Time		tSu(L)		5			ns
SDI 的 Hold Time		th(D)		5			ns
SDI 的 Setup Time		tsu(D)	RL=162 Ω	3			ns
CLK 讯号的最大爬升时间		tr	CL=10pF			500	ns
CLK 讯号的最大下降时间		tf				500	ns
SDO 的爬升时间		tr, SDO			10		ns
SDI 的下降时间		Tf, SDO			10		ns
电流输出埠的电位爬升时	 	tor			35		ns
电流输出埠的电位下降时	计 间	tof			35		ns


动态特性测试电路图

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com 第7页共12页

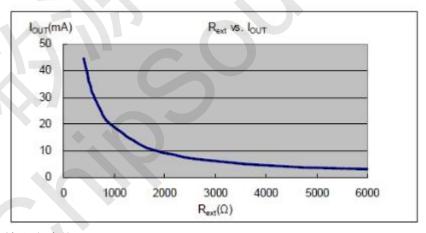
十一、TC5020FJ时序波形图




十二、TC5020FJ应用信息

■ 恒流

当客户将 TC5020FJ 应用于 LED 显示屏设计上时,通道间与通道间,甚至芯片与芯片间的电流,差异极小。此源自于 TC5020FJ 的优异特性:

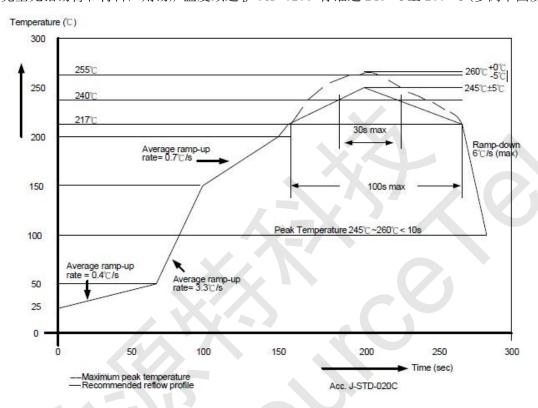

- ▶ 通道间的最大电流差异小于±2.5%,而芯片间的最大电流差异小于±3%。
- ▶ 具有不受负载端电压影响的电流输出特性,如下图所示。输出电流的稳定性将不受 LED 顺向电压(VF)变化而影

■ 调整输出电流

如下图所示,藉由外接一个电阻 Rext 调整输出电流(IOUT)。

套用下列公式可计算出输出电流值,

VR-EXT=1.17V; IOUT=VR-EXT*(1/Rext)x15; Rext = (VR-EXT/IOUT)x15


公式中的 VR-EXT 是指 R-EXT 端的电压值,Rext 是指外接至 R-EXT 端的电阻值。当电阻值是 744Ω ,透过公式计算可得输出电流值 23.6mA; 当电阻值是 1860Ω 时,输出的电流则为 9.43mA。

■ "Pb-Free & Green"

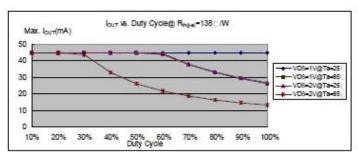
ShenZhen ChipSourceTek Technology Co.,Ltd.

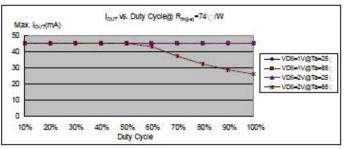
本公司所生产的" Pb-Free & Green"的半导体产品遵循欧洲 RoHS 标准, 封装选用 100%之纯锡以兼容于目 前锡铅(SnPb)焊接制程,且支持需较高温之无铅制程。纯锡目前已被欧美及亚洲区的电子产品客户与供货商广泛采用,成为取代含锡铅材料的最佳替代品。100%纯锡可生产于制程温度为 215℃ 至 240 ℃ 的含锡铅(SnPb)锡炉制程。但若客户使用完全无铅锡膏和材料,则锡炉温度须达 J-STD-020C 标准之 245 ℃至 260 ℃(参阅下图及表格)。

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ ≥2000
<1.6mm	260 +0 °C	260 +0 °C	260 +0 °C
1.6mm – 2.5mm	260 +0 °C	250 +0 °C	245 +0 °C
≧2.5mm	250 +0 °C	245 +0 °C	245 +0 °C

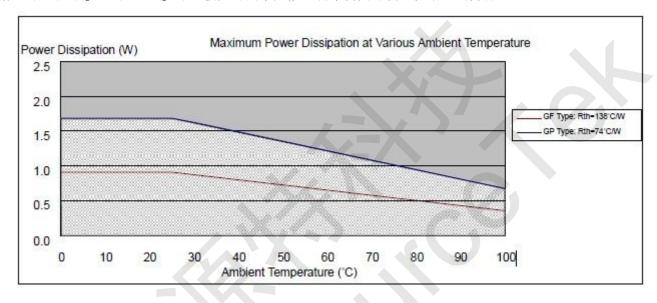
附注: 详情请参阅聚积科技之"Policy on Pb-free & Green Package"。

■ 封装体散热功率 (PD)

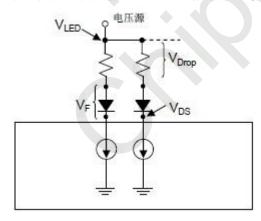

封装体的最大散热功率,是由公式 PD(max)=(Tj-Ta)/Rth(j-a)来决定。当 16 个通道同时打开时,真正的功率为 PD(act)=(IDDxVDD)+(IOUTxDutyxVDSx16)。为保持 PD(act)≤PD(max),可输出的最大电流与 duty cycle 间的关系为: IOUT={[(Tj-Ta)/Rth(j-a)]-(IDDxVDD)}/VDS /Duty/16,其中 Tj=150°C。

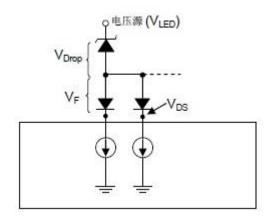

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com

E-mail: Sales@ChipSourceTek.com Tony.Wang@ChipSourceTek.com



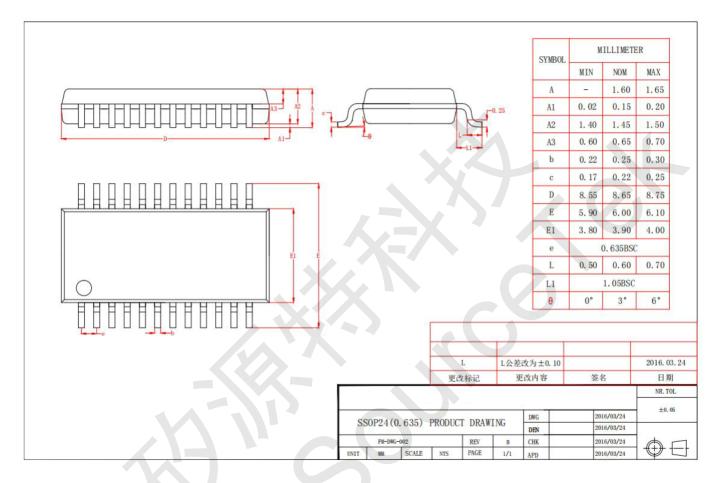
ShenZhen ChipSourceTek Technology Co.,Ltd.




依据 PD(max)=(Tj-Ta)/Rth(j-a),被允许的最大散热功率会随环境温度增加而降低。

■ 负载端供应电压 (VLED)

为使封装体散热能力达到最佳化,建议输出端电压 (V_{DS})的最佳操作范围是0. $4V^{\circ}$ 0. 8V ($I_{OUT}=3^{\circ}36mA$)。如果 $V_{DS}=V_{LED}-V_{F}$ 且 $V_{LED}=5V$ 时,此时过高的输出端电压 (V_{DS})可能会导致 P_{D} (act) P_{D} (max);在此状况,建议尽可能使用较低的 V_{LED} 电压供应,也可用外串电阻或 Z_{CD} 2 包含的 Z_{CD} 3 包含的 Z_{CD} 4 包含的 Z_{CD} 5 包含的 Z_{CD} 6 包含的 Z_{CD} 6 包含的 Z_{CD} 7 包含的 Z_{CD} 7 包含的 Z_{CD} 7 包含的 Z_{CD} 7 包含的 Z_{CD} 8 包含的 Z_{CD} 9 电阻力 Z_{CD} 9 电阻力 Z_{CD} 9 包含的 Z_{CD} 9 电阻力 Z_{CD} 9 电力 Z_{CD} 9 电阻力 Z_{CD} 9 电力 Z_{CD} 9



TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com

十三、TC5020FJ封装信息

SSOP-24 (0.635)

