ZHT2501 用户手册

8 位 OTP 微控制器 Ver 1.1

修改记录说明

版本号	修改说明	备注
V0. 0	初稿版本	
V1. 0	发布初版	
V1. 1	增加 SOT23-6 封装脚位,增加注意事项说明,修订 CONT 寄存器默认值错误	

注意事项:

- 1、CONT 寄存器 Bit. 3 (PAB) 预分频选择位及 Bit. 2~0 (PSR2~PSR0) 分频选择位 在切换状态时,需先关闭看门狗使能,待切换完成后再打开看门狗使能,否则 容易导致系统复位;
- 2、同时使用 PWM 功能和时钟倍频功能时,必须配合 PWM 分频器使用,避免 PWM 功能异常;

ShenZhen ChipSourceTek Technology Co.,Ltd.

目 录

1.	芯片简介	5
	1. 1 功能特性	5
	1. 2 引脚分配	6
	1.3 引脚描述	7
	1.4 系统框图	8
2.	存储器结构	9
	2.1 程序存储区	9
	2. 2 数据存储区	10
3.	功能描述	
	3.1 操作寄存器	11
	3.1.1 RPAGE~RO/IAR(间接寻址寄存器)	
	3.1.2 RPAGE~R1/TCC(TCC 定时计数器)	
	3.1.3 RPAGE~R2/PCL(程序计数器低位)	11
	3.1.4 RPAGE~R3/STATUS(状态寄存器)	12
	3.1.5 RPAGE~R4/RSR(RAM 选择寄存器)	
	3.1.6 RPAGE~R6/PORT6(P6 数据寄存器)	
	3.1.7 RPAGE~R8/PWMCON(PWM 控制寄存器)	14
	3.1.8 RPAGE~R9/PRD(PWM 周期寄存器)	
	3.1.9 RPAGE~RA/PDC1(PWM1 占空比寄存器)	15
	3.1.10 RPAGE~RB/PDC2(PWM2 占空比寄存器)	15
	3.1.11 RPAGE~RC/PDC3(PWM3 占空比寄存器)	15
	3.1.12 RPAGE~RD/ICIECR(P6 输入状态变化中断使能)	16
	3.1.13 RPAGE~RE/CPUCON(CPU 模式控制寄存器)	16
	3.1.14 RPAGE~RF/ISR(中断标志寄存器)	17
	3.1.15 RPAGE~R72/P6HCR (P6 上拉控制寄存器)	17
	3.1.16 RPAGE~R73/P6DCR(P6 下拉控制寄存器)	18
	3.1.17 RPAGE~R76/P6CR(P6 方向控制寄存器)	18
	3.1.18 RPAGE~R78/TKCON(TK 控制寄存器)	18
	3.1.19 RPAGE~R79/TKCHS(触摸通道使能控制寄器)	19
	3.1.20 RPAGE~R7A/TKVS(TK 电压选择寄存器)	19
	3.1.21 RPAGE~R7B/TKCNTH (TK 计数器高位寄存器)	20
	3.1.22 RPAGE~R7C/TKCNTL (TK 计数器低位寄存器)	20
	3.1.23 RPAGE~R7D/CONT (控制寄存器)	20
	3.1.24 RPAGE~R7E/WDTCR(WDT 使能控制寄存器)	21
	3.1.25 RPAGE~R7F/IMR(中断使能控制寄存器)	22
	3.2 中断	23
	3.2.1 中断现场保护	24
	3. 3 复位	25
	3.3.1 复位功能概述	25
	3.3.2 WDT 看门狗复位	25
	3.3.3 POR 上电复位	26
	3. 3. 4 LVR 低电压复位	26

ShenZhen ChipSourceTek Technology Co.,Ltd.

	3. 3. 5 工作频率与 LVR 低压检测关系	27
	3.4 工作模式	29
	3. 4. 1 高速模式	30
	3. 4. 2 低速模式	30
	3. 4. 3 空闲模式	31
	3. 4. 4 睡眠模式	31
	3.5 系统时钟	32
	3. 5. 1 内部 RC 振荡器	32
	3.6 1/0 端口	33
	3. 6. 1 GPIO 内部结构图	33
	3. 6. 2 端口驱动能力说明	34
	3. 6. 3 端口施密特参数	34
	3. 6. 4 端口状态变化唤醒	34
	3.7 TCC 定时计数器	36
	3.7.1 TCC 定时设置说明	37
	3.7.2 TCC 定时计算说明	37
	3.8 PWM 脉宽调制	38
	3.8.1 PWM 内部结构与时序	38
	3.8.2 PWM 周期与占空比	39
	3.8.3 PWM 脉宽调制设置说明	40
	3.9 CDC 触摸按键检测	41
	3. 9. 1 触摸检测概述	41
	3. 9. 2 CDC 结构与时序	41
	3. 9. 3 CDC 触摸检测设置说明	43
4.	OPTION 配置表	45
5.	指令集	47
6.	电气特性	49
	6.1 极限参数	49
	6.2 直流电气特性	49
	6.3 特性曲线图	
	6. 3. 1 内部低速 RC 振荡器 1-压频特性曲线	50
	6. 3. 2 内部低速 RC 振荡器 1-温频特性曲线	50
	6.3.3 内部低速 RC 振荡器 2-压频特性曲线	51
	6.3.4 内部低速 RC 振荡器 2-温频特性曲线	51
	6.3.5 内部 910KHz RC 振荡器-压频特性曲线	52
	6.3.6 内部 910KHz RC 振荡器-温频特性曲线	52
	6.3.7 内部 8MHz RC 振荡器-压频特性曲线	53
	6.3.8 内部 8MHz RC 振荡器-温频特性曲线	53
7.	封装尺寸	54
	7. 1 8PIN 封装尺寸	54
	7. 2 6PIN 封装尺寸	55

1. ZHT2501芯片简介

1.1 功能特性

CPU 配置

- 2K×14-Bit OTP ROM
- 80×8-Bit SRAM
- 7 级堆栈空间
- 8级可编程电压复位(LVR) 1. 2V, 1. 6V, 1. 8V, 2. 4V 2.6V, 3.0V, 3.3V, 3.6V
- 工作电流小于 2 mA(8MHz/5V)
- 工作电流小于 5 μA (14KHz/5V)
- 休眠电流小于 1 µA (休眠模式)

1/0 配置

- 1组6个GPI0端口: P6<5:0>
- 6个可编程上拉 1/0 引脚
- 6个可编程下拉 1/0 引脚
- 6个可编程唤醒端口: P6<5:0>
- 6个可配置驱动增强 P6<5:0>
- 3个可配置二级灌电流增强 P6<2:0>
- 外部中断: P60

工作电压

● 工作电压范围:

VLVR1. 8V \sim 5. 5V | Fcpu=0 \sim 4MHz VLVR1. 6V \sim 5. 5V | Fcpu=0 \sim 1MHz

工作温度

工作温度范围: -40°C-85°C

工作频率范围

内置 IHRC 振荡电路: 8MHz/910KHz

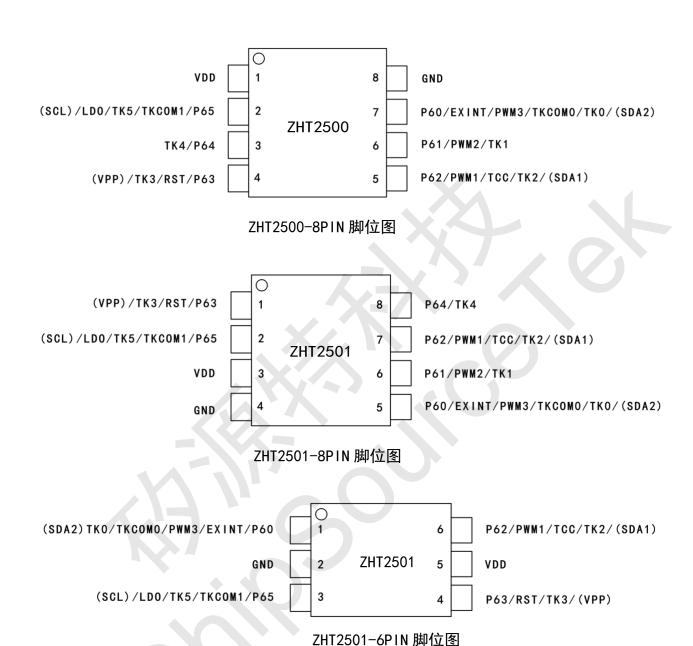
- 指令时钟分频选择: 2Clock, 4Clock, 8Clock 16Clock, 32Clock
- 内置 JLRC 振荡电路: 14KHz (5V) /8KHz (3V)

外围模块

- 8Bit 实时时钟/计数器
- 6 通道 CDC 触摸转换器
- 3 路共周期 8Bit 脉宽调制器 PWM
- 内置 4 级 LDO: 4V、3V、2V、1.5V

中断源

- 外部中断
- TCC 溢出中断
- PWM 周期溢出中断
- CDC 转换完成中断
- 端口状态改变中断


特性

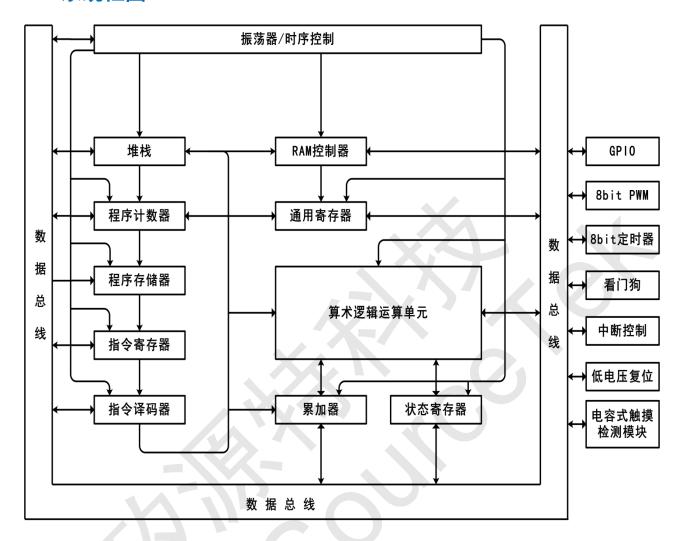
- 四种工作模式
- LDO 电压可输出
- 可编程 WDT 定时器
- 内置电容模式触摸
- OTP 可做 1K 烧录两次

封装类型

- ZHT2500- DIP/SOP 8
- ZHT2501- DIP/SOP 8
- ZHT2501- S0T23-6

1.2 引脚分配

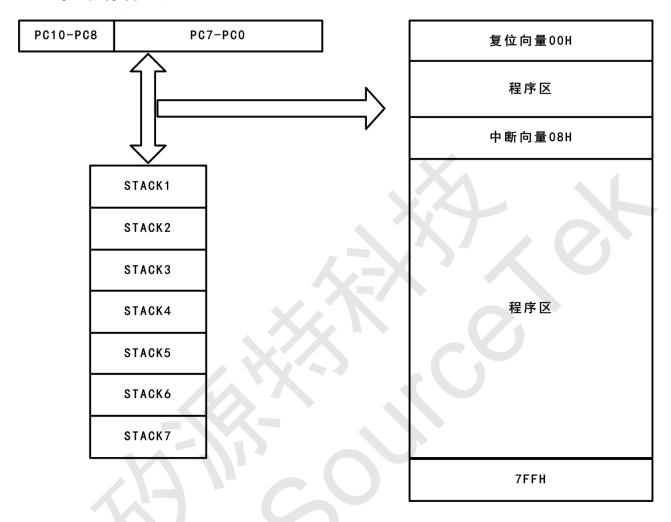
ShenZhen ChipSourceTek Technology Co.,Ltd.


1.3 引脚描述

序号	管脚名	1/0	功能描述						
	P60	1/0	GP10,可编程上下拉、拉灌电流增强、二级灌电流增强, 端口唤醒						
	EXINT	I	外部中断输入端口						
P60	PWM3	0	PWM3 输出						
	TKCOMO	I	TKCOM 端口						
	TK0	I	触摸检测端口 0						
	SDA2	I	烧录数据口						
	P61	1/0	GP10,可编程上下拉、拉灌电流增强、二级灌电流增强, 端口唤醒						
P61	PWM2	0	PWM2 输出						
	TK1	I	触摸检测端口 1						
	P62	1/0	GP10,可编程上下拉、拉灌电流增强、二级灌电流增强, 端口唤醒						
	PWM1	0	PWM1 输出						
P62	TCC		TCC 外部计数时钟输入端口						
	TK2		触摸检测端口 2						
	SDA1		烧录数据口						
	P63	1/0	GPIO,可编程上下拉、灌电流增强,端口唤醒						
P63	RST	_	外部复位端口						
P03	TK3	I	触摸检测端口 3						
	VPP	I, ,	烧录高压口						
P64	P64	1/0	GP10,可编程上下拉、拉灌电流增强,端口唤醒						
P04	TK4		触摸检测端口 4						
	P65	1/0	GP10,可编程上下拉、拉灌电流增强,端口唤醒						
	TKCOM1	I	TKCOM 端口						
P65	TK5	I	触摸检测端口 5						
	LD0	0	LDO 电压输出端口						
	SCL	I	烧录时钟口						
	VDD		电源						
	VSS		地						

ShenZhen ChipSourceTek Technology Co.,Ltd.

1.4 系统框图


系统电路框图

ShenZhen ChipSourceTek Technology Co.,Ltd.

2. ZHT2501存储器结构

2.1 程序存储区

程序存储区结构图

ShenZhen ChipSourceTek Technology Co.,Ltd.

2.2 数据存储区

地址	寄存器				
0x00	RO/IAR(间接寻址寄存器)				
0x01	R1/TCC(TCC 定时计数器)				
0x02	R2/PCL(程序计数器低位)				
0x03	R3/STATUS(状态寄存器)				
0x04	R4/RSR(RAM 选择寄存器)				
0x05	保留				
0x06	R6/PORT6(P6 数据寄存器)				
0x07	保留				
0x08	R8/PWMCON (PWM 控制寄存器)				
0x09	R9/PRD(PWM 周期寄存器)				
0x0A	RA/PDC1 (PWM1 占空比寄存器)				
0x0B	RB/PDC2(PWM2 占空比寄存器)				
0x0C	RC/PDC3(PWM3 占空比寄存器)				
0x0D	RD/ICIECR(P6输入状态变化中断使能)				
0x0E	RE/CPUCON(CPU 模式控制寄存器)				
0x0F	RF/ISR(中断标志寄存器)				
	通用寄存器区				
0x10~0x5F	通用寄存器区				
0x10~0x5F 0x70	保留				
4.4-117					
0x70	保留				
0x70 0x71	保留				
0x70 0x71 0x72	保留 保留 R72/P6HCR(P6 上拉控制寄存器)				
0x70 0x71 0x72 0x73	保留 保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器)				
0x70 0x71 0x72 0x73 0x74	保留 保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留				
0x70 0x71 0x72 0x73 0x74 0x75	保留 保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留				
0x70 0x71 0x72 0x73 0x74 0x75 0x76	保留 保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留 保留 R76/P6CR (P6 方向控制寄存器)				
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77	保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留 保留 R76/P6CR (P6 方向控制寄存器) 保留				
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78	保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留 保留 R76/P6CR (P6 方向控制寄存器) 保留 R78/TKCON (TK 控制寄存器)				
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79	保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留 保留 R76/P6CR (P6 方向控制寄存器) 保留 R76/P6CR (P6 方向控制寄存器) 保留 R78/TKCON (TK 控制寄存器) R79/TKCHS (触摸通道使能控制寄器)				
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A	保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留 保留 保留 R76/P6CR (P6 方向控制寄存器) 保留 R78/TKCON (TK 控制寄存器) R79/TKCHS (触摸通道使能控制寄器) R7A/TKVS (TK 电压选择寄存器)				
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B	保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留 保留 R76/P6CR (P6 方向控制寄存器) 保留 R78/TKCON (TK 控制寄存器) R79/TKCHS (触摸通道使能控制寄器) R7A/TKVS (TK 电压选择寄存器) R7B/TKCNTH (TK 计数器高位寄存器)				
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x78 0x79 0x7A 0x7B 0x7C	保留 R72/P6HCR (P6 上拉控制寄存器) R73/P6DCR (P6 下拉控制寄存器) 保留 保留 R76/P6CR (P6 方向控制寄存器) 保留 R78/TKCON (TK 控制寄存器) R79/TKCHS (触摸通道使能控制寄器) R7A/TKVS (TK 电压选择寄存器) R7B/TKCNTH (TK 计数器高位寄存器) R7C/TKCNTL (TK 计数器低位寄存器)				

3. ZHT2501功能描述

3.1 操作寄存器

3.1.1 RPAGE~RO/IAR (间接寻址寄存器)

00H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IAR				RIND	<7:0>			
读/写				Ī	?			
复位值				,	(1		

间接寻址寄存器并不是一个实际存在的寄存器,它的主要功能是作为间接寻址的指针。 任何以 R0 作为指针的指令,实际对应的地址是 R4(RAM 选择寄存器)低 6 位 RSR<5:0>所指 向的数据。

3. 1. 2 RPAGE~R1/TCC(TCC 定时计数器)

01H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCC (R)	TCC<7>	TCC<6>	TCC<5>	TCC<4>	TCC<3>	TCC<2>	TCC<1>	TCC<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

TCC 是一个 8Bit 上行计数器, 时钟源可选内部时钟/外部时钟, 计数溢出可形成中断, TCC 可读可写。

TCC 可由 EXINT 引 上的信号边沿或指令周期触发产生加 1 操作(CONT. 4 位定义)。如果清零 PAB 位(CONT. 3),会有一个预分频器分配给 TCC,当 TCC 寄存器被写入一个值时,预分频器的值会被清 0。

3.1.3 RPAGE~R2/PCL(程序计数器低位)

02H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCL	PCL<7>	PCL<6>	PCL<5>	PCL<4>	PCL<3>	PCL<2>	PCL<1>	PCL<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

程序计数器(PC)是用于记录每个指令周期中 CPU 所要处理的指令的指针。在 CPU 运行周期中, PC 将指令指针推进程序存储器, 然后指针自增 1 以进入下一个周期。ZHT2501 拥

ShenZhen ChipSourceTek Technology Co.,Ltd.

有一个 11 位宽度的程序计数器 (PC), 其低字节来自可读写的 PCL, 高位 (PC<10:8>) 不可读。

堆栈是用于记录程序返回的指令指针。当调用子程序时,PC 将指令指针压栈。待执行返回指令时,堆栈将指令指针送回 PC,继续进行原来的进程。ZHT2501 拥有 7 级堆栈,该堆栈 既不占程序存储空间也不占数据存储空间,并且堆栈指针不能读写。

- (1) 寄存器 PC 和内置 7 级堆栈都是 11 位宽, 用于 2K×14Bit ROM 的寻址, ZHT2501 程序 存储区映射。
- (2) 一般情况下, PC 自增一; 复位时, PC 的所有位都被清零。
- (3) 指令 "JMP" 允许直接载入低 11 位地址,因此,JMP 指令可以实现当前页面内(2K 范围内)任意位置跳转。指令 "JMP" 直接载入低 11 位地址,同时将 PC +1 压栈,子程序入口地址只要在同一页面内就能够被准确定位。
- (4) 执行 "RET" 指令时将栈顶数据送到 PC。
- (5) 当设置 PC 查表能力为 1/4K 时(设置 OPTION 选项中查表范围 为 0~256),任何对 PC 的内容进行直接修改的指令都将引起 PC 的第 9、10、11 位被清零。因此,产生的跳转限于同一页面的前 256 个地址,改变 PC 内容的指令需要 2 个指令周期。

当设置 PC 查表能力为 2K 时,任何对 PC 值进行改写的指令会相应影响 PC 最高三位。因此,产生的跳转可扩充至 2K 范围。

- (6) 发生中断时,程序计数器的值将发生改变,PC 赋值为 0x08。
- (7) 堆栈的工作犹如循环缓冲器,也就是说,压栈 7 次之后,第 8 次压栈时进栈的数据将覆盖第 1 次进栈的数据,而第 9 次压栈时进栈的数据将覆盖第 2 次进栈的数据,依此类推。

3.1.4 RPAGE~R3/STATUS(状态寄存器)

03H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STATUS	RST	GB1	GB0	Т	Р	Z	DC	С
读/写	R	R/W	R/W	R	R	R/W	R/W	R/W
复位值	0	0	0	1	1	Х	Х	Х

Bit<7>: RST-复位类型标志位

0: 其它复位类型

1: 若休眠模式由引脚状态改变唤醒

Bit<6>: GB1-未定义,通用读写位 Bit<5>: GB0-未定义,通用读写位

Bit<4>: T-时间溢出位

0: WDT 溢出

1: 执行 "SLEEP"和 "CWDT"指令或低压复位

ShenZhen ChipSourceTek Technology Co.,Ltd.

Bit<3>: P-掉电标志位

0: 执行 "SLEEP" 指令

1: 上电复位或执行 "CWDT" 指令

影响 T/P 的事件如下表所示:

类型	RST	Т	Р
上电复位	0	1	1
工作模式下按 RESET	0	保持	保持
RESET 唤醒	0	1	0
工作模式下 WDT 溢出	0	0	保持
WDT 溢出唤醒	0	0	0
端口状态变化唤醒	1	1	0
执行 CWDT 指令	保持	1	1
执行 SLEEP 指令	保持	1	0

Bit<2>: Z-零标志位算术或逻辑操作结果为零时置为"1"

0: 当算术或者逻辑运算结果不为 0

1: 当算术或者逻辑运算结果为 0

Bit<1>: DC-辅助进位标志

0: 执行加法运算时, 低四位没有进位产生; /执行减法运算时, 低四位产生借位

1: 执行加法运算时, 低四位有进位产生; /执行减法运算时, 低四位没产生借位

Bit<0>: C-进位标志

0: 执行加法运算时, 高四位没有进位产生; /执行减法运算时, 高四位产生借位

1: 执行加法运算时, 高四位有进位产生; /执行减法运算时, 高四位没产生借位

3.1.5 RPAGE~R4/RSR(RAM 选择寄存器)

04H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RSR	T	RSR<6>	RSR<5>	RSR<4>	RSR<3>	RSR<2>	RSR<1>	RSR<0>
读/写	R	R/W						
复位值	1	Х	Х	Х	Х	Х	Х	Х

RFSR<6:0> 在间接寻址方式中用于选择 RAM 寄存器地址(寻址范围: 0X10~0X5F)

RSR 用于配合 RO 实现间接寻址操作。用户可以将某个寄存器对应的地址放进 RSR, 然后通过访问间接寻址寄存器 RO, 此时地址将指向 RSR 中对应地址的寄存器。

ShenZhen ChipSourceTek Technology Co.,Ltd.

3.1.6 RPAGE~R6/PORT6(P6 数据寄存器)

06H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PORT6	-	-	P65	P64	P63	P62	P61	P60
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	1	1	1	1	1	1

端口输入/输出数据寄存器, P6端口为6位

3.1.7 RPAGE~R8/PWMCON(PWM 控制寄存器)

08H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWMCON	T1EN	PWM3EN	PWM2EN	PWM1EN	T1PTEN	T1PSR<2>	T1PSR<1>	T1PSR<0>
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7>: T1EN -T1/PWM 计数器使能控制

1: 使能

0: 禁止

若设置 PRD 寄存器, T1 计数到 PRD 预设值复位, T1 从 1 开始计数。

Bit<6:4>: PWM3EN~PWM1EN - PWM3~PWM1 使能控制位

1: 使能 (PWM3 (P60), PWM2 (P61), PWM1 (P62), 相应端口设置为输出)

0: 禁止

Bit<3>: T1PTEN -T1 预分频选择控制位

Bit<2:0>: T1PSR2~T1PSR1 分频系数选择位:

T1PTEN	T1PSR<2>	T1PSR<1>	T1PSR<0>	分频比
0	0	0	0	1:1
1	0	0	0	1:2
1	0	0	1	1:4
1	0	1	0	1:8
1	0	1	1	1:16
1	1	0	0	1:32
1	1	0	1	1:64
1	1	1	0	1:128
1	1	1	1	1:256

3.1.8 RPAGE~R9/PRD(PWM 周期寄存器)

09H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PRD	PRD<7>	PRD<6>	PRD<5>	PRD<4>	PRD<3>	PRD<2>	PRD<1>	PRD<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: PRD<7:0>-PWM 周期八位数据

3.1.9 RPAGE~RA/PDC1(PWM1 占空比寄存器)

OAH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDC1	PDC1<7>	PDC1<6>	PDC1<5>	PDC1<4>	PDC1<3>	PDC1<2>	PDC1<1>	PDC1<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: PDC1<7:0>-PWM1 占空比八位数据

3.1.10 RPAGE~RB/PDC2(PWM2 占空比寄存器)

OBH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDC2	PDC2<7>	PDC2<6>	PDC2<5>	PDC2<4>	PDC2<3>	PDC2<2>	PDC2<1>	PDC2<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: PDC2<7:0>-PWM2 占空比八位数据

3.1.11 RPAGE~RC/PDC3 (PWM3 占空比寄存器)

0CH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDC3	PDC3<7>	PDC3<6>	PDC3<5>	PDC3<4>	PDC3<3>	PDC3<2>	PDC3<1>	PDC3<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: PDC3<7:0>-PWM3 占空比八位数据

ShenZhen ChipSourceTek Technology Co.,Ltd.

3.1.12 RPAGE~RD/ICIECR (P6 输入状态变化中断使能)

ODH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ICIECR	-	_	IEN6<5>	IEN6<4>	IEN6<3>	IEN6<2>	IEN6<1>	IEN6<0>
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<5:0>: IEN6<5:0>-P6 输入状态变化中断使能控制位

1: 使能

0: 禁止

3.1.13 RPAGE~RE/CPUCON(CPU 模式控制寄存器)

OEH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CPUCON	IPWM1	PWMCKS	TCCCKS	PWMWE	TCCWE	STPHX	CLKMD	IDLE
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7>: IPWM1-PWM1 互补(取反)输出使能位

1: 使能互补输出

0: 禁止互补输出

Bit<6>: PWMCKS-PWM 时钟源选择位

1: 选择系统时钟

0: 选择指令周期时钟

Bit<5>: TCCCKS-TCC 时钟源选择位

1: 选择系统时钟

0: 选择指令周期时钟

Bit<4>: PWMWE-PWM 唤醒使能位

1: 使能 PWM 唤醒, 可唤醒空闲模式

0: 禁止 PWM 唤醒

Bit<3>: TCCWE-TCC 唤醒使能位

1: 使能 TCC 唤醒, 可唤醒空闲模式, RTC 模式下可唤醒睡眠以及空闲模式

0: 禁止 TCC 唤醒

RTC 模式下设置 TCCWE=1&RTCS=1 休眠时 LXT 继续工作不会停止, 否则时休眠会停止 LXT。

Bit<2>: STPHX-高速时钟控制位

1: 停止高速时钟,包括 IRC 和晶振振荡器时钟(不包括 RTC 时钟)

0: 高速时钟正常工作

ShenZhen ChipSourceTek Technology Co.,Ltd.

Bit<1>: CLKMD-系统时钟选择位

1: 系统时钟使用低速 RC 振荡器时钟

0: 系统时钟使用高速 IRC 或者晶振振荡器时钟

系统从高速模式进入低速模式时 先设置 CLKMD=1, 后设置 STPHX=1;

系统从低速模式进入高速模式时 先设置 STPHX=0, 后设置 CLKMD=0。

Bit<0>: IDLE-空闲模式选择位

1: 系统执行 SLEEP 指令时进入空闲模式,系统时钟正常工作

TCC 和 PWM 在空闲模式下如果选择系统时钟可继续工作,并可唤醒系统。

0: 系统执行 SLEEP 指令时进入睡眠模式

3.1.14 RPAGE~RF/ISR(中断标志寄存器)

0FH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ISR	_	_	_	TKIF	T1 IF	EXIF	ICIF	TCIF
读/写	R	R	R	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7:5>: 未使用位

Bit<4>: TKIF-CDC 转换完成中断标志

Bit<3>: T1IF-T1 定时溢出/PWM 周期溢出中断标志位

Bit<2>: EXIF-外部端口中断标志位

Bit<1>: ICIF-P6 端口状态变化中断标志位

Bit<0>: TCIF-TCC 定时溢出中断标志位

1:有中断,软件清0

0: 无中断

注意:清除中断标志位时,必须使用 MOV RF, A 操作,不能使用 BTC 和 AND RF, A 指令操作。

3.1.15 RPAGE~R72/P6HCR (P6 上拉控制寄存器)

72H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P6HCR		-	P6PH<5>	P6PH<4>	P6PH<3>	P6PH<2>	P6PH<1>	P6PH<0>
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

Bit<5:0>: P6PH<5:0>-P6 上拉使能

0: 使能

1: 禁止

ShenZhen ChipSourceTek Technology Co.,Ltd.

3.1.16 RPAGE~R73/P6DCR (P6 下拉控制寄存器)

73H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P6DCR	ı	_	P6PD<5>	P6PD<4>	P6PD<3>	P6PD<2>	P6PD<1>	P6PD<0>
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

Bit<5:0>: P6PD<5:0>下拉使能控制

0: 使能 1: 禁止

3.1.17 RPAGE~R76/P6CR(P6方向控制寄存器)

76H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P6CR		_	P6CR<5>	P6CR<4>	P6CR<3>	P6CR<2>	P6CR<1>	P6CR<0>
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	1	1	1	1	1	1	1

Bit<5:0>: P6CR<5:0>- Port6 方向控制位

1: 输入

0: 输出

3.1.18 RPAGE~R78/TKCON (TK 控制寄存器)

78H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKCON	TKRUN	TKEN	TKMD	TKASET	TKCOMS	TKCKS<2>	TKCKS<1>	TKCKS<0>
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7>: TKRUN-CDC 通道转换启动控制位

1: 启动转换

0: 转换完成, 自动清零

Bit<6>: TKEN-TK 模块使能控制位

1: 使能

0: 禁止

Bit<5>: TKMD-TK 模式选择位

1: TK 为振荡模式(TKCOM 无需外接电容)

0: TK 为电荷转移模式(TKCOM 需外接电容)

ShenZhen ChipSourceTek Technology Co.,Ltd.

Bit<4>: TKASET-TK 自动采样控制位

1: 使能触摸采样自动启停, T1EN=1 时启动触摸采样, T1 溢出时停止采样

0: 禁止触摸采样自动启停

Bit<3>: TKCOMS- TKCOM 端口选择位

1: 选择 P65 作为 TKCOM 口

0: 选择 P60 作为 TKCOM 口

Bit<2:0>: TKCKS<2:0>- CDC 转换时钟分频选择位

TKCKS<2>	TKCKS<1>	TKCKS<0>	时钟分频选择		
0	0	0	Fosc		
0	0	1	Fosc/2		
0	1	0	Fosc/4		
0	1	1	Fosc/8		
1	0	0	Fosc/16		
1	0	1	Fosc/32		
1	1	0	Fosc/64		
1	1	1	Fosc/128		

3. 1. 19 RPAGE~R79/TKCHS (触摸通道使能控制寄器)

79H (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKCHS	-		TKCHS<5>	TKCHS<4>	TKCHS<3>	TKCHS<2>	TKCHS<1>	TKCHS<0>
读/写	R	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<5:0>: TKCHS<5:0>-TK 输入口使能控制位

1: 使能 TK<n>通道, P6<n>为模拟输入口

0: 禁止 TK<n>通道, P6<n>为 GPI0

注:模拟输入口将禁止其他 10 口功能包括输入、输出、上拉、下拉及其他复用功能

3. 1. 20 RPAGE~R7A/TKVS (TK 电压选择寄存器)

7AH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKVS	_	_		TKVLS<1>	TKVLS<0>	TKVS<2>	TKVS<1>	TKVS<0>
读/写	R	R	R	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7:5>: 未使用位

ShenZhen ChipSourceTek Technology Co.,Ltd.

Bit<4:3>: TKVLS<4:3>-比较电压选择位

TKVLS<1>	TKVLS<0>	比较电压
0	0	1. 2V
0	1	0. 5*VCHG
1	0	0. 75*VCHG
1	1	0. 9*VCHG

Bit<2:0>: TKVS<2:0>-上拉充电电压选择位

TKVS<2>	TKVS<1>	TKVS<0>	上拉充电电压 VCHG
0	0	0	VDD
0	0	1	4V
0	1	0	3V
0	1	1	2V
1	0	0	1. 5V

3.1.21 RPAGE~R7B/TKCNTH(TK 计数器高位寄存器)

7BH (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKCNTH	TKC<15>	TKC<14>	TKC<13>	TKC<12>	TKC<11>	TKC<10>	TKC<9>	TKC<8>
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: TKC<15:8>-TK 计数器高 8 位

3.1.22 RPAGE~R7C/TKCNTL(TK 计数器低位寄存器)

7C (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKCNTL	TKC<7>	TKC<6>	TKC<5>	TKC<4>	TKC<3>	TKC<2>	TKC<1>	TKC<0>
读/写	R/W							
复位值	0	0	0	0	0	0	0	0

Bit<7:0>: TKC<7:0>-TK 计数器低 8 位

3.1.23 RPAGE~R7D/CONT (控制寄存器)

7D (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CONT	GB2	INT	TS	TE	PAB	PSR2	PSR1	PSR0
读/写	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	1	1	1	1

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com

ShenZhen ChipSourceTek Technology Co.,Ltd.

Bit<7>: GB2-通用寄存器位

Bit<6>: INT-中断使能标志位

0: 由指令或硬件禁止中断

1: 由指令使能中断

Bit<5>: TS-TCC 信号源选择位

0: 内部指令周期时钟

1: 外部输入信号(P62 需要设置为输入口)

Bit<4>: TE-TCC 信号边沿选择位

0: TCC 引脚信号发生由低到高变化加 1

1: TCC 引脚信号发生由高到低变化加 1

Bit<3>: PAB-预分频器分配位

0: 预分频器分给 TCC

1: 预分频器分给 WDT

Bit<2:0>: PSR2~PSR0-TCC/WDT 预分频选择控制位:

PSR2	PSR1	PSR0	TCC 分频系数	WDT 分频系数
0	0	0	1:2	1:1
0	0	1	1:4	1:2
0	1	0	1:8	1:4
0	1	1	1:16	1:8
1	0	0	1:32	1:16
1	0	1	1:64	1:32
1	1	0	1:128	1:64
1	1	1	1:256	1:128

3.1.24 RPAGE~R7E/WDTCR(WDT 使能控制寄存器)

7E (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WDTCR	WDTE	EIS	TKWE	VF0UT	-	PC<10>	PC<9>	PC<8>
读/写	R/W	R/W	R/W	R/W	R	R	R	R
复位值	1	0	0	0	0	1	1	1

Bit<7>: WDTE-WDT 使能控制

1: 使能

0: 禁止

注意:看门狗使能需 WDTEN 使能且 OPTION 选项【看门狗】选择【使能】。

ShenZhen ChipSourceTek Technology Co.,Ltd.

Bit<6>: EIS-P60 外部中断使能位

1: 使能,在这种情况下,P60 的 I/0 控制位(P6CR 的 Bit0)必须设为"1",管脚的状态可以由 P6 端口读取

0: 禁止, P60 为双向 I/0 管脚, EXINT 通道被屏蔽

Bit<5>: TKWE-TK 唤醒使能控制位

1: 使能 0: 禁止

Bit<4>: VFOUT-LDO 输出使能控制位

1: 使能, P65 口输出

0: 禁止

Bit<3>: 未使用

Bit<2:0>: PC<10:8>-PC 计数器高三位值

3.1.25 RPAGE~R7F/IMR(中断使能控制寄存器)

7F (R)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IMR	-	-	-	TKIE	T1 IE	EXIE	ICIE	TCIE
读/写	R	R	R	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

Bit<7:5>: 未使用位

Bit<4>: TKIE-CDC 转换完成中断使能位

Bit<3>: T1IE-T1 定时溢出/PWM 周期溢出中断使能位

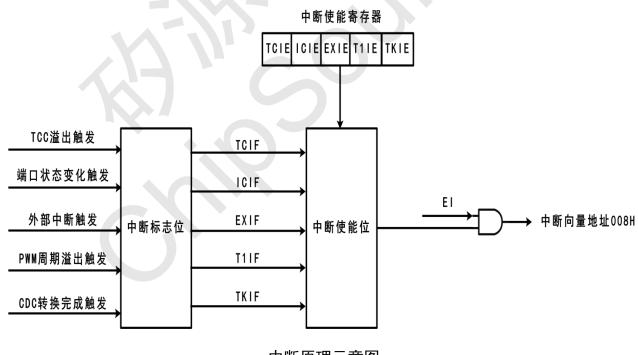
Bit<2>: EXIE-外部端口中断使能位

Bit<1>: ICIE-P6 端口状态变化中断使能位

Bit<0>: TCIE-TCC 定时溢出中断使能位

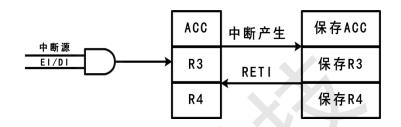
1: 使能

0: 禁止


ShenZhen ChipSourceTek Technology Co.,Ltd.

3.2 中断

ZHT2501 具有 5 个中断源, 无论是使用其中那一个中断, 都必须使能总中断, 即 "EI" 指令。中断向量为固定默认地址 008H。下面分别是每个中断的特性:


中断类型	中断源	使能条件	中断标志
外部	外部中断	EI + EXIE=1	EXIF
外部	P6 端口状态变化中断	EI + ICIE=1	ICIF
内部	TCC 溢出中断	EI + TCIE=1	TCIF
内部	T1 定时溢出/PWM 周期溢出中断	EI + T1 E=1	T11F
内部	CDC 转换完成中断	EI + TKIE=1	TKIF

RPAGE 的 RF 为中断状态标志寄存器,它们记录了当某个中断产生中断请求后的中断标志位。100F 为中断设置寄存器,中断的允许与禁止在这两个寄存器中设置。总中断的允许是通过下 "EI" 指令,相反,总中断的禁止是通过下 "DI" 指令。当一个中断产生时,它的下一条指令的执行将从中断向量地址 008H 处执行。在离开中断服务程序之前相应的中断标志位必须清零,这样才能避免中断的误动作。

3.2.1 中断现场保护

在响应中断过程中,强烈建议在程序中使用中断保护,将 ACC、R3、R4 的内容保存起来,直到离开中断子程序时,将被保存的值再重新载入 ACC、R3、R4,如此是为了避免在执行中断子程序时,有指令将 ACC、R3、R4 的值改变,导致返回主程序时发生错误。如下图所示:

软件中断现场保护示意图

3.3 复位

3.3.1 复位功能概述

ZHT2501 系统提供 4 种复位方式:

- POR 上电复位
- RESET 脚输入低电平复位
- WDT 看门狗溢出复位
- LVR 低电压复位

以上任意一种复位发生时,所有的系统寄存器初始化到复位值,程序停止运行,同时程序计数器 PC 清零。复位结束后,系统从向量 0000H 处重新开始运行。

任何一种复位情况都需要一定的响应时间,系统复位机制能够保证 MCU 的可靠复位。不同类型的振荡器,完成复位所需要的时间也不同。因此,VDD 的上升速度和不同振荡器的起振时间都是不固定的。RC 振荡器的起振时间最短,晶体振荡器的起振时间则较长。在用户终端使用的过程中,应注意考虑应用场景对上电复位时间的要求。

3.3.2 WDT 看门狗复位

看门狗复位是系统的一种保护设置。在正常状态下,由程序将看门狗定时器清零。若出错,系统处于未知状态,看门狗定时器溢出,此时系统复位。看门狗复位后,系统重启进入正常状态。

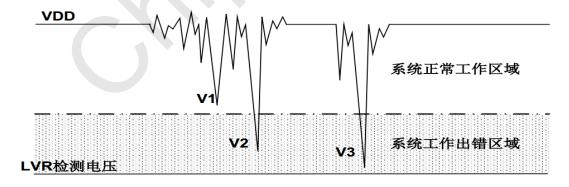
- 看门狗定时器状态:系统检测看门狗定时器是否溢出,若溢出,则系统复位;
- 系统初始化: 所有的系统寄存器被置为初始化默认值:
- 振荡器开始工作:振荡器开始提供系统时钟:
- 执行程序:上电结束,程序开始运行;

看门狗定时器应用注意事项:

- ◆ 对看门狗清零之前,检查 I/O 口的状态和 RAM 的内容可增强程序的可靠性;
- ◆ 不能在中断中对看门狗清零,否则无法侦测到主程序跑飞的状况;
- ◆ 程序中应该只在主程序中有一次清看门狗的动作,这种架构能够最大限度的发挥看 门狗的保护功能。

3.3.3 POR 上电复位

上电复位与 LVR 操作密切相关。系统上电的过程呈逐渐上升的曲线形式,需要一定时间才能达到正常电平值。


- 上电:系统检测到电源电压上升并等待其稳定;
- 外部复位(仅限于外部复位引脚使能状态):系统检测外部复位引脚状态。如果不为高电平,系统保持复位状态直到外部复位引脚释放;
- 系统初始化: 所有的系统寄存器被置为初始值;
- 振荡器开始工作:振荡器开始提供系统时钟;
- 执行程序:上电结束,程序开始运行;

上电复位时间由 OPTION 中的【复位时间】选择决定,如下表所示:

PWRT 与 WDT	复位建立时间	
PWRT=WDT	4.5ms(跟随看门狗复位时间)	
PWRT=WDT	18ms (跟随看门狗复位时间)	
PWRT=WDT	72ms (跟随看门狗复位时间)	
PWRT=WDT	288ms (跟随看门狗复位时间)	
PWRT≠WDT	140us (独立固定复位时间)	

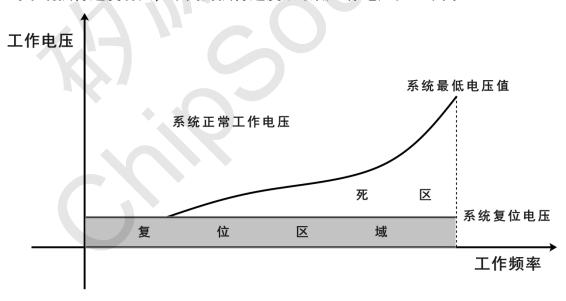
3. 3. 4 LVR 低电压复位

掉电复位针对外部因素引起的系统电压跌落情形(例如,干扰或外部负载的变化),掉 电可能会引起系统工作状态不正常或程序执行错误。

电压跌落可能会进入系统死区。系统死区意味着电源不能满足系统的最小工作电压要求。 上图是一个典型的掉电复位示意图。图中,VDD 受到严重的干扰,电压值降的非常低。虚线

以上区域系统正常工作,在虚线以下的区域内,系统进入未知的工作状态,这个区域称作死区。当 VDD 跌至 V1 时,系统仍处于正常状态;当 VDD 跌至 V2 和 V3 时,系统进入死区,则容易导致出错。以下情况系统可能进入死区:

DC 运用中:


DC 运用中一般都采用电池供电, 当电池电压过低或单片机驱动负载时, 系统电压可能跌落并进入死区。这时, 电源不会进一步下降到 LVR 检测电压, 因此系统维持在死区。

AC 运用中:

系统采用 AC 供电时, DC 电压值受 AC 电源中的噪声影响。当外部负载过高,如驱动马达时,负载动作产生的干扰也影响到 DC 电源。VDD 若由于受到干扰而跌落至最低工作电压以下时,则系统将有可能进入不稳定工作状态。在 AC 运用中,系统上、下电时间都较长。其中,上电时序保护使得系统正常上电,但下电过程却和 DC 运用中情形类似, AC 电源关断后, VDD 电压在缓慢下降的过程中易进入死区。

3.3.5 工作频率与 LVR 低压检测关系

为了改善系统掉电复位的性能,首先必须明确系统具有的最低工作电压值。系统最低工作电压与系统执行速度有关,不同的执行速度下最低工作电压值也不同。

如上图所示,系统正常工作电压区域一般高于系统复位电压,同时复位电压由低电压检测(LVR)电平决定。当系统执行速度提高时,系统最低工作电压也相应提高,但由于系统复位电压是固定的,因此在系统最低工作电压与系统复位电压之间就会出现一个电压区域,系统不能正常工作,也不会复位,这个区域即为死区。

ShenZhen ChipSourceTek Technology Co.,Ltd.

为避免出现死区电压, 在选择工作频率的时候, 要选择相应的 LVR 复位电压点。如下表:

IRC 频率	Clocks 分频	LVR 复位电压点
IRC-8MHz	2 Clocks	LVR=1.8V
IRC-910KHz	2 Clocks	LVR=1.6V

注: 1、工作频率=指令周期频率=IRC 频率+Clocks 分频; 2、此工作频率和 LVR 复位电压点的对应值,只是推荐值,用户在使用过程中,根据用于的具体应用场合可以适当的调整复位电压点。

3.4 工作模式

ZHT2501 可以在 4 种工作模式下以不同的时钟频率工作,这些模式可以控制振荡器的 工作、程序的执行以及模拟电路的功能损耗。

高速模式:系统时钟选择高速IRC时钟;

低速模式:系统时钟选择内部低速时钟;

空闲模式:系统时钟正常工作,其他部分进入睡眠(TCC和PWM选择系统时钟可继续工作 并可唤醒系统、CDC 转换完成与端口状态变化均可唤醒系统);

睡眠模式: 所有功能暂停工作, 系统进入睡眠, 可端口状态变化唤醒;

功能模块	高速模式	低速模式	空闲模式	睡眠模式
IHRC	运行	STPHX 控制	STPHX 控制	停止
ILRC	运行	运行	运行	停止
CPU 指令	执行	执行	停止	停止
TCC	可工作	可工作	可工作	停止
PWM	可工作	可工作	可工作	停止
内部中断	全部有效	全部有效	TCC, PWM, CDC 有效	TCC (P62)
外部中断	有效	有效	ICIE	ICIE
唤醒功能			P61C, TCC, PWM, CDC	P61C
看门狗定时器	WDT 选项控制	WDT 选项控制	WDT 选项控制	WDT 选项控制

3.4.1 高速模式

高速模式是系统高速时钟工作模式,系统时钟源由高速 RC 振荡器提供。程序被执行。上电复位或任意一种复位触发后,系统进入高速模式执行程序。当系统从睡眠模式被唤醒后进入高速模式。高速模式下,高速振荡器正常工作,功耗最大。

- ◆ 程序被执行, 所有的功能都可控制;
- ◆ 系统速率为高速;
- ◆ 高速振荡器和内部低速振荡器都正常工作;
- ◆ 通过 CPU 模式控制寄存器,系统可以从高速模式切换到其它任何一种工作模式;
- ◆ 系统从睡眠模式唤醒后进入高速模式:
- ◆ 低速模式可以切换到高速模式:
- ◆ 从高速模式进入到空闲模式,唤醒后返回到高速模式;

3.4.2 低速模式

低速模式为系统低速时钟工作模式。系统时钟源由内部低速 RC 振荡器提供。低速模式由 CPU 模式控制寄存器的 CLKMD 位控制。当 CLKMD=0 时,系统为高速模式;当 CLKMD=1 时,系统进入低速模式。进入低速模式后,不能自动禁止高速振荡器,必须通过 SPTHX 位来禁止以减少功耗。

- ◆ 程序被执行,所有的功能都可控制;
- ◆ 系统速率为低速:
- ◆ 内部低速 RC 振荡器正常工作, 高速振荡器由 STPHX=1 控制。低速模式下, 强烈建议停止高速振荡器:
- ◆ 通过 CPU 模式控制寄存器, 低速模式可以切换进入其它的工作模式;
- ◆ 从低速模式进入到睡眠模式,唤醒后返回到低速模式;
- ◆ 高速模式可以切换到低速模式;
- ◆ 从低速模式进入到空闲模式,唤醒后返回到低速模式;

3.4.3 空闲模式

空闲模式是另外的一种理想状态。在睡眠模式下,所有的功能和硬件设备都被禁止,但在空闲模式下,系统时钟保持工作,空闲模式下的功耗大于睡眠模式下的功耗。空闲模式下,不执行程序,但具有唤醒功能的定时器和 PWM 仍正常工作,定时器和 PWM 的时钟源为仍在工作的系统时钟。空闲模式下,有 4 种方式可以将系统唤醒: 1、P6 端口状态变化触发; 2、TCC 定时器唤醒; 3、PWM 周期唤醒; 4、CDC 转换完成唤醒。用户可以给定时器或者 PWM 设定固定的周期,系统就在溢出时被唤醒。由 CPU 模式控制寄存器 IDLE 位决定是否进入空闲模式,当 IDLE=1,系统进入空闲模式。

- ◆ 程序停止执行, 所有的功能被禁止;
- ◆ 具有唤醒功能的定时器正常工作;
- ◆ 作为系统时钟源的振荡器正常工作,其它的振荡器工作状态取决于系统工作模式的配置;
- ◆ 由高速模式进入到空闲模式,被唤醒后返回到高速模式;
- ◆ 由低速模式进入到空闲模式,被唤醒后返回到低速模式;
- ◆ 空闲模式下的唤醒方式为 P6 端口状态变化唤醒、TCC 定时器溢出和 PWM 周期溢出、CDC 转换完成唤醒;
- ◆ 空闲模式下 TCC 和 PWM 功能仍然有效;

3.4.4 睡眠模式

睡眠模式是系统的理想状态,不执行程序,振荡器也停止工作。整个芯片的功耗低于 1uA。 睡眠模式可以由 P6 端口状态变化触发唤醒。从高速模式或者低速模式进入睡眠模式,被唤醒 后将返回到对应模式。由 CPU 模式控制寄存器的 IDLE 位控制是否进入睡眠模式,当 IDLE=0, 系统进入睡眠模式。

- ◆ 程序停止执行,所有的功能被禁止;
- ◆ 所有的振荡器,包括外部高速振荡器、内部高速振荡器和内部低速振荡器都停止工作:
- ◆ 功耗低于 1uA;
- ◆ 由高速模式进入到睡眠模式,被唤醒后返回到高速模式;
- ◆ 由低速模式进入到睡眠模式,被唤醒后返回到低速模式;
- ◆ 睡眠模式的唤醒源为 P6 端口状态变化触发:

3.5 系统时钟

ZHT2501 内部集成了 2 种振荡器。具体参看下表:

振荡器类型	说明
IHRC(内置高速 RC 振荡器)	可以通过 RCM 选择 910KHz/8MHz
ILRC(内置低速 RC 振荡器)	14KHz

3.5.1 内部 RC 振荡器

ZHT2501 提供内部 RC 模式, 频率默认值为 8MHz。

内部 RC 振荡模式包含 8MHz、910KHz 两种频率值。通过设置 0PTION 的配置位,可选择 IRC 工作频率,下面是它们的对应关系:

Firc	IRC 频率
8 M	IRC 频率选为 8MHz
910K	IRC 频率选为 910KHz

ZHT2501 提供了多种分频选择,可以在 OPTION 中选择,适用于更多的场合。如下表:

Clocks	Clocks 分频
2c l ock	分频为 2clock
4clock	分频为 4c lock
8clock	分频为 8clock
16c lock	分频为 16clock
32c lock	分频为 32clock

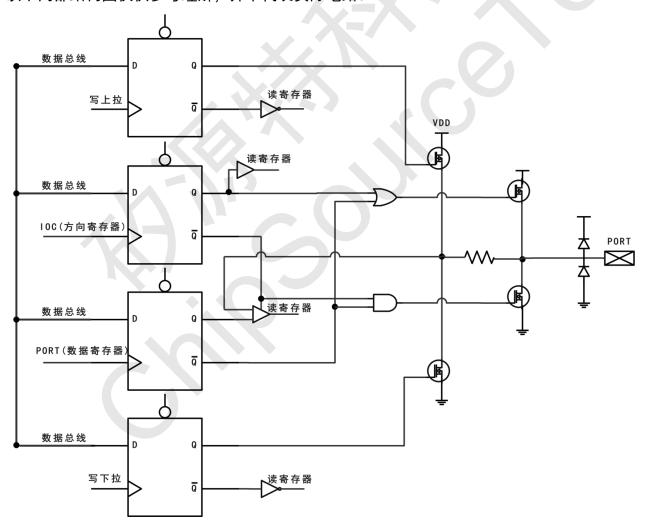
ShenZhen ChipSourceTek Technology Co.,Ltd.

3.6 1/0 端口

ZHT2501 有 1 组双向 I/0 端口, 共 6 个输入, 6 个输出, I/0 可以复用为其它功能。

6 个可编程上拉 I/0 引脚: P6<5:0>;

6 个可编程下拉 I/0 引脚: P6<5:0>;


6 个可配置驱动增强 I/O 引脚: P6<5:0>灌电流增强, P6<5:4>、P6<2:0>拉电流增强;

3 个可配置二级灌电流增强: P60、P61、P62;

6 个可编程端口状态变化唤醒 I/0 引脚: P6<5:0>;

3.6.1 GPIO 内部结构图

以下内部结构图仅供参考理解,并不代表实际电路。

10 控制寄存器/数据寄存器/上拉/下拉结构电路

3.6.2 端口驱动能力说明

ZHT2501 拥有6个一级灌电流增强 IO 口(P6<5:0>),5个一级拉电流增强 IO 口(P6<5:4>、P6<2:0>),3个二级灌电流增强 IO 口(P60, P61, P62)。拉灌电流增强需通过配置 OPTION 选项中的【驱动增强】、【二级驱动增强】选择。

驱动类别	驱动能力(V0H=4. 4V , V0L=0. 6V)	驱动端口
无驱动能力增强	IOH 6mA IOL 16mA	P6<5:0>
一级拉电流增强	IOH 12mA	P6<5:4>, P6<2:0>
一级灌电流增强	IOL 21mA	P6<5:0>
二级灌电流增强	IOL 27mA	P60, P61, P62

注:驱动能力仅供参考,具体值以实测为主。

3.6.3 端口施密特参数

ZHT2501 端口的施密特特性表格如下(仅作参考):

端口	SMT
P6<5:0>	0. 54*VDD/0. 25*VDD

以上参数仅做参考、请以目标样机实测数据为准。

3.6.4 端口状态变化唤醒

ZHT2501包含 6 个可编程端口状态变化唤醒 I/0: P6<5:0>。芯片执行"SLEEP"指令可以进入到睡眠模式。此时,系统时钟停止,所有模块停止工作,WDT(若使能)清 0,但继续运行。端口状态变化唤醒可以通过程序选择继续原有的进程(SLEEP 前执行 DI)或执行相应的跳转(SLEEP 前执行 EI),并打开相应的使能控制位,跳转到中断子程序。

端口状态改变查询方式唤醒设置

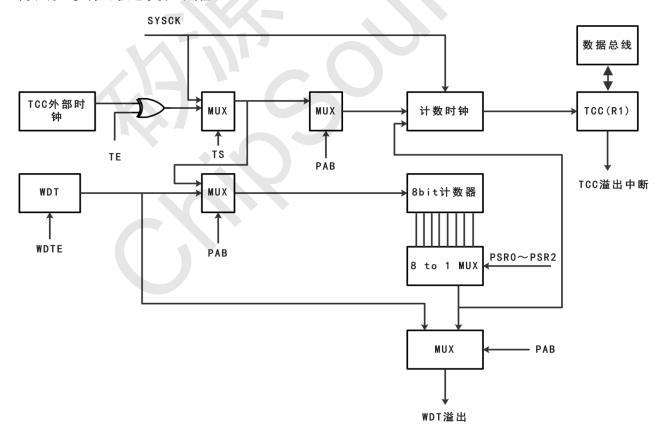
- 1、PORT6端口唤醒口设为输入;
- 2、可以根据需要选择唤醒口的内部上拉或下拉;
- 3、使能 PORT6 端口状态改变中断:
- 4、使能端口状态改变独立中断及唤醒控制;
- 5、执行 DI 指令,不进入中断地址口;

ShenZhen ChipSourceTek Technology Co.,Ltd.

- 6、执行"SLEEP"指令,进入睡眠 SLEEP 模式;
- 7、唤醒后, 执行 SLEEP 的下一条指令;

端口状态改变中断方式唤醒设置

- 1、PORT6 端口唤醒口设为输入;
- 2、可以根据需要选择唤醒口的内部上下拉;
- 3、使能端口状态改变独立中断及唤醒控制;
- 4、使能 PORT6 端口状态改变中断;
- 5、执行"EI"指令,等待进入中断地址口;
- 6、下指令 "SLEEP", 进入睡眠 SLEEP 模式;
- 7、唤醒后会进入中断地址口,退出中断后,执行 SLEEP 下一条指令;


3.7 TCC 定时计数器

ZHT2501提供一个 8 位计数器作为TCC和WDT 的预分频器。预分频器在同一时间内仅供 TCC或仅供WDT使用,且由CONT 寄存器里的PAB 位来决定预分频器的分配。PSR0 ~PSR2三位 决定预分频比。在TCC 模式下每次TCC 被写入一个值,预分频寄存器就被清零。当预分频器 分配到WDT模式,当执行 "CWDT"或 "SLEEP"指令时,WDT 和预分频寄存器的值被清零。如果预分频器先分配给TCC 然后分配给WDT,预分频计数器的内容将自动清除,反之亦然。

TCC (R1) 是一个 8Bit 上行计数器,只要有时钟就工作。时钟源既可以是内部系统时钟(上升沿触发),也可以选择外部时钟(由 TCC 引脚输入,触发沿可选),如果没有分频控制,每个时钟(Fm/Fs)周期(选择内部时钟)或每个外部时钟周期(外部时钟),计数器实现加1。系统提供一个 8Bit 计数器作为 TCC 的预分频器。可以通过 CONT 寄存器设置 TCC 预分频、触发沿、时钟等。

TCC 计数溢出可以形成中断信号。

在 IDLE 模式下, TCC 中断可以唤醒电路, 唤醒后可以选择进中断或者继续执行原程序, 方法参考端口状态变化唤醒。

TCC/WDT 结构框图

3.7.1 TCC 定时设置说明

- 给 TCC 寄存器赋初始值;
- 设置 CONT 寄存器的值(选择作为计时器或计数器及预分频比);
- 作为计数器使用,需要在 CONT 寄存器选择 TCC 外部信号为正沿或负沿加 1;
- 若需要执行中断功能,须设置 IOCF 寄存器中的 TCIE(BitO)为 1,并执行 EI 指令;
- 中断程序部分将手动保存 ACC、STATUS 及 R4 于堆栈器中,执行 RETI 指令后,再自堆栈中取出,退出中断前要清楚 TCC 中断标志位;

3.7.2 TCC 定时计算说明

TCC 定时功能通过写值到 TCC 寄存器, 给定时器赋初始值, 定时器从初始值位置开始累加, 直至定时器溢出产生中断。

TCC 定时时间计算公式(选择内部指令周期时钟):

TCC 定时时间 = (系统时钟分频/Fosc) × (TCC 分频) × (256 – TCC 初始值)

示例:

系统时钟分频=2clock, Fosc=8 MHz, TCC 分频选择=4 分频, TCC 初始值=156;

TCC 定时时间 = $(2/8) \times (4) \times (256 - 156) = 100$ us

TCC 定时时间计算公式(选择外部输入时钟):

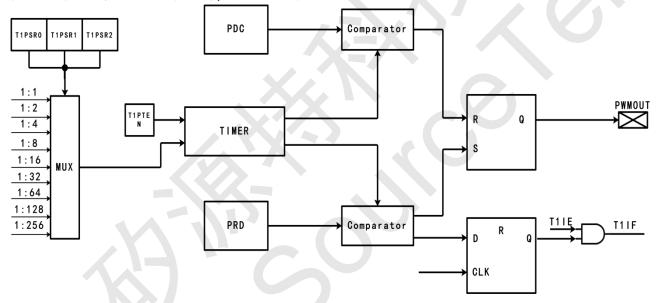
TCC 定时时间 = (外部输入时钟) × (TCC 分频) × (256 - TCC 初始值)

示例:

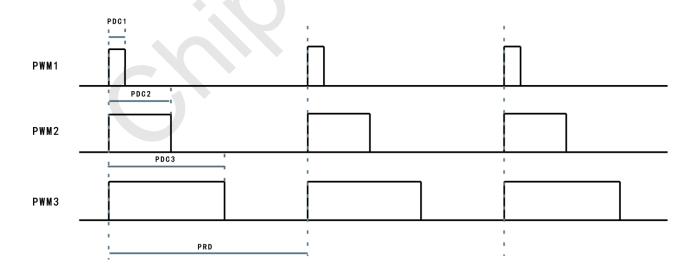
外部输入时钟=1 MHz, TCC 分频选择=4 分频, TCC 初始值=156;

TCC 定时时间 = (1) × (4) × (256 – 156) = 400 us

3.8 PWM 脉宽调制


ZHT2501 提供 3 路共周期的 8 bit PWM 信号,用来产生脉宽调制信号,PWM 输出波形由周期及占空比决定,传输速率为周期倒数。

PWM 带有周期溢出中断, 使能后可跳转到中断。


在 IDLE (空闲模式)下, PWM 在 CPU 模式控制寄存器中选择 PWMCKS=1 并且使能 PWMWE, 可唤醒系统。

3.8.1 PWM 内部结构与时序

以下内部结构图仅供参考理解,并不代表实际电路。

PWM 工作结构电路

3 路共周期 PWM 时序说明

3.8.2 PWM 周期与占空比

PWM 提供一个带 8bit 可编程预分频的时钟计数器(T1),作为 PWM 模块的波特率时钟发生器。可通过使能 PWM 控制寄存器中的 T1EN,使能 T1 计数器功能,通过 T1PTEN 及 T1PSR<2:0>控制位,可进行 T1 计数器的预分频设置。

PWM 周期通过写值到 PWM 周期寄存器(PRD), 当 T1 计数器的值与 PRD 值相等,在下一个递增周期发生如下事件:

- T1 计数器清零;
- 对应 PWM 输出引脚置高电平;
- 产生 PWM 周期溢出中断(若使能);
- PWM 占空比由 PDC1/PDC2/PDC3 锁存到 PDC/T1 比较寄存器:

PWM 周期计算公式:

PWM 周期 =
$$(PRD) \times (\frac{1}{Fosc}) \times (T1 分频)$$

示例:

PRD=100, Fosc=8 MHz, T1 分频选择=2 分频;

PWM 周期 =
$$(100) \times (\frac{1}{8}) \times (2) = 25$$
 us

PWM 占空比通过写值到 PWM 占空比寄存器(PDC1, PDC2, PDC3),当 T1 计数器的值溢出清零时,PDC1/PDC2/PDC3 的值被锁存到 PDC/T1 比较寄存器。当 PDC/T1 比较寄存器的值与 T1 计数器的值相等时,PWM 输出引脚置为低电平。PDC1, PDC2, PDC3 的值可以在任何时候被写入,但 PDC/T1 比较寄存器的值只有在周期溢出时写入:

PWM 占空比计算公式:

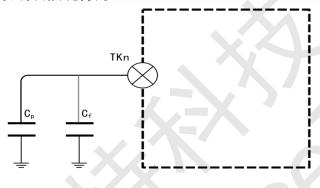
PWM 占空比 = (PDC) ×
$$(\frac{1}{Fosc})$$
 × (T1 分频)

示例:

PDC=50, Fosc=8 MHz, T1 分频选择=2 分频;

PWM 占空比 =
$$(50) \times (\frac{1}{8}) \times (2) = 12.5 \text{ us}$$

3.8.3 PWM 脉宽调制设置说明


- 设置 PWMCON 寄存器,选择相应的定时器为 PWM 模式、定时器的分频比、定时器中断类型(若使能 PWM 中断)、定时器的时钟源等;
- 写 RPAGE-R9 寄存器的值,确定该 PWM 通道的周期;
- 写 PDCx 寄存器的值,确定该 PWM 通道的占空比;
- 使能相应定时器;
- 使能或禁止 PWM 对应的定时器中断,并下 "EI"或 "DI"指令(如果需要);

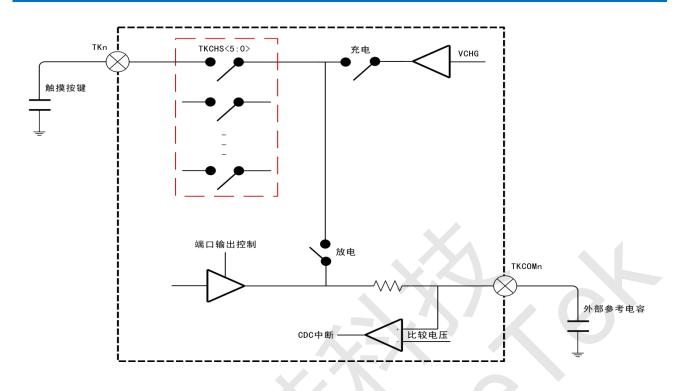
3.9 CDC 触摸按键检测

3.9.1 触摸检测概述

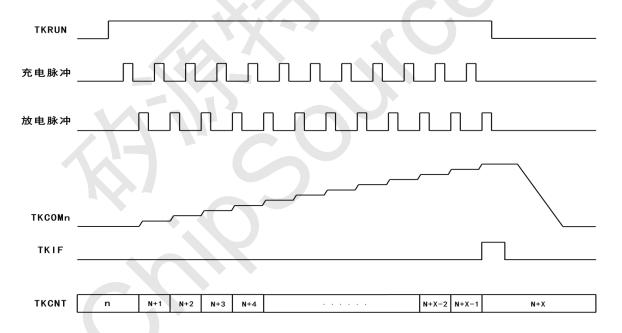
ZHT2501 的触摸按键检测基于自电容感应原理,当手指触摸按键表面,人体的导电性质和大质量构成了接地的平行板电容,如触摸按键说明示意图所示,C。为按键电容(包含 PCB、导线、触摸板等寄生电容),C_r为手指触摸后的等效电容。芯片通过 CDC 转换电容值为数字信号,判断数值的变化以确认按键行为。

触摸按键说明

芯片内部集成有 Bandgap, 四级 LDO(4V/3V/2V/1.5V), CDC 专用振荡器,提供两种触摸检测模式。

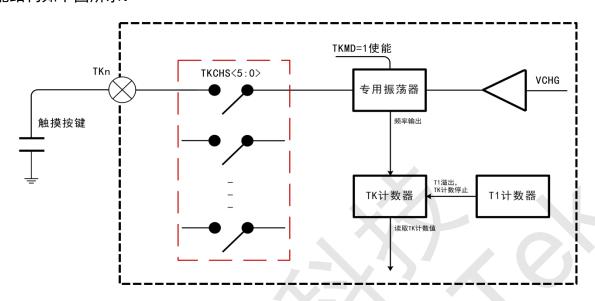

3.9.2 CDC 结构与时序

ZHT2501 内部集成 CDC(Capacitance -to-Digital Converter)电容数字转换器用于触摸按键的检测。芯片提供两种触摸检测模式分别为基于电荷转移模式和基于振荡模式。


电荷转移模式是一种精确度好、可配置性灵活的检测模式。电荷转移模式下 TKCOM 端口需外接电容,TK 计数器时钟源为系统时钟,可通过 TKCKS<2:0>选择 CDC 转换时钟分频。CDC 充电电压 VCHG 可通过 TKVS<2:0>选择,分别可选 VDD、4V(LD0)、3V(LD0)、2V(LD0)、1.5V(LD0)。CDC 比较电压可通过 TKVLS<4:3>选择,分别可选 1.2V(Bandgap)、0.5*VCHG、0.75*VCHG、0.9*VCHG。电荷转移模式通过先给触摸按键充电,然后放电给外部参考电容,TK 计数器同步计数,通过比较外部参考电容电压与比较电压,产生 CDC 中断,此时硬件自动停止 TK 计数器计数,程序控制 10 口将 TKCOM 端口电压放电至地。通过读取 TK 计数器数值判断触摸按键电容值的变化,以此判断按键行为是否发生。具体功能结构及时序如下图所示:

ShenZhen ChipSourceTek Technology Co.,Ltd.

电荷转移模式结构说明



电荷转移模式时序说明

振荡模式为一种简单易操作的检测模式,但是可配置性及精确度不如电荷转移模式。振荡模式下 TKCOM 端口无需外接电容, TK 计数器时钟源为专用振荡器时钟,专用振荡器与触摸按键检测端口相连,当发生触摸按键行为,按键电容发生变化,专用振荡器频率同步发生改变,T1 定时器溢出时 TK 计数器停止计数,此时判断 TK 计数器的计数值以判断按键行为是

否发生。该模式可设置为自动检测方式, T1EN 使能时启动采样, T1 定时器溢出后停止。具体功能结构如下图所示:

振荡模式结构说明

3.9.3 CDC 触摸检测设置说明

电荷转移模式:

- 1、选择模式为电荷转移模式;
- 2、配置上拉充电电压 VCHG;
- 3、配置比较电压;
- 4、使能 CDC 模块 TKEN=1;
- 5、配置 CDC 相关通道、TKCOMn 及转换时钟;
- 6、设置 TKCOM 管脚输出 0, 对外接电容放电;
- 7、设置 TKCOM 管脚为输入模式;
- 8、清除触摸按键计数寄存器(TKCNTH、TKCNTL);
- 9、启动 CDC 通道转换(TKRUN=1);
- 10、等待转换完成(TKRUN=0)或 CDC 中断触发;
- 11、读取触摸按键计数寄存器(TKCNTH、TKCNTL),判断是否有按键行为发生;
- 12、重复 4-11 对不同通道进行扫描;

振荡模式:

- 1、选择模式为振荡模式;
- 2、配置上拉充电电压 VCHG(TKVS<2:0>),作为振荡器参考电压;
- 3、配置 TK 自动采样(TKASET);
- 4、使能 CDC 模块 TKEN=1;
- 5、启动 CDC 通道转换(TKRUN=1);
- 6、配置 CDC 相关通道;
- 7、配置 T1 定时器相关时钟、定时时间、中断使能;
- 8、使能 T1 定时器(T1EN=1);
- 9、等待 T1 定时器溢出, T1 中断触发;
- 10、读取触摸按键计数寄存器(TKCNTH、TKCNTL)转存到通用寄存器,清除TKCNTH、TKCNTL 寄存器并重新使能T1定时器(T1EN=1)以使振荡器重新振荡,程序继续判断是否有按键行为发生:
- 11、重复 6-10 对不同通道进行扫描;

4. ZHT2501 OPTION 配置表

CODE OPTION	选项	功能描述		
毛门边	使能	看门狗 WDT 使能		
看门狗	禁止	看门狗 WDT 禁止		
	2 Clocks	指令周期选择 2 Clocks		
	4 Clocks	指令周期选择 4 Clocks		
Clocks 分频	8 Clocks	指令周期选择 8 Clocks		
	16 Clocks	指令周期选择 16 Clocks		
	32 Clocks	指令周期选择 32 Clocks		
100 炬菇	8M	IRC 频率选择 8M		
IRC 频率 -	910KHz	IRC 频率选择 910KHz		
作英罗拉姆华语	禁止	禁止振荡器倍频功能		
振荡器倍频选项	使能	使能振荡器倍频功能		
	禁止	禁止低压复位		
	LVR=1. 2V	低压复位点选择 1. 2V		
	LVR=1. 6V	低压复位点选择 1. 6V		
	LVR=1. 8V	低压复位点选择 1.8V		
低压复位	LVR=2. 4V	低压复位点选择 2. 4V		
	LVR=2. 6V	低压复位点选择 2. 6V		
	LVR=3. 0V	低压复位点选择 3. 0V		
	LVR=3. 3V	低压复位点选择 3. 3V		
	LVR=3. 6V	低压复位点选择 3. 6V		
	使用 2K	程序使用 0TP 全部 2K 空间		
0TP 分页选择	使用前 1K	程序只使用 0TP 前 1K 空间		
	使用后 1K	程序只使用 OTP 后 1K 空间		
代码加密 -	2K/前 1K/后 1K 无加密	OTP 程序空间选择不加密(存储空间由【OTP 分页选择】控制)		
109加伍	2K/前 1K/后 1K 加密	OTP 程序空间选择加密(存储空间由【OTP 分页选择】控制)		
复位端口上拉	使能	使能 P63 端口上拉		
友 地	禁止	禁止 P63 端口上拉		
	GPIO	P63 作为通用 I/0 口		
P63 端口	GPI	P63 作为输入口		
	RST	P63 作为外部复位端口		

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com E-mail: Sales@ChipSourceTek.com Tony.Wang@ChipSourceTek.com

ShenZhen ChipSourceTek Technology Co.,Ltd.

		·				
	PWRT=WDT=4.5ms	复位建立时间=WDT 溢出时间(不分频)= 4.5ms				
	PWRT=WDT=18ms	复位建立时间=WDT 溢出时间(不分频)= 18ms				
	PWRT=WDT=72ms	复位建立时间=WDT 溢出时间(不分频)= 72ms				
有价时间	PWRT=WDT=288ms	复位建立时间=WDT 溢出时间(不分频)= 288ms				
复位时间	PWRT=140us, WDT=4.5ms	复位建立时间=140us, WDT 溢出时间(不分频)=4.5ms				
	PWRT=140us, WDT=18ms	复位建立时间=140us, WDT 溢出时间(不分频)=18ms				
	PWRT=140us, WDT=72ms	复位建立时间=140us, WDT 溢出时间(不分频)=72ms				
	PWRT=140us, WDT=288ms	复位建立时间=140us, WDT 溢出时间(不分频)=288ms				
10 = 1 1 M 3 L	禁止	禁止 10 口驱动增强功能				
驱动增强 	使能	使能 P6<5:0>灌电流增强、P6<5:4><2:0>拉电流增强				
— 4777100二十十歲212	P60/P61/P62 二级强灌禁止	禁止 P60/P61/P62 二级灌电流增强				
二级驱动增强 	P60/P61/P62 二级强灌使能	使能 P60/P61/P62 二级灌电流增强				
IRC 振荡器电压	IRC 振荡器选择 LDO 电压	IRC 振荡器电源选择 LDO 电压				
源选择	IRC 振荡器选择 VDD 电压	IRC 振荡器电源选择 VDD 电压				
/C /古作	兼容老 153 系列	低速振荡器与老 153 系列保持一致				
低速振荡器特性 	压频特性稳定	低速振荡器压频特性稳定				
l .						

5. ZHT2501指令集

指令	指令动作	标志位影响
ADD A, R	A+R→A	Z, C, DC
ADD R, A	A+R→R	Z, C, DC
AND A, R	A&R→A	Z
AND R, A	A&R→R	Z
CLRA	0 → A	Z
CLR R	0→R	Z
INVA R	/R→A	Z
INV R	/R→R	Z
DA	A 寄存器调整为 BCD 值	С
DECA R	R−1→A	Z
DEC R	R−1→R	Z
DJA R	R-1→A, skip if zero	_
DJ R	R-1→R, skip if zero	_
INCA R	R+1→A	Z
INC R	R+1→R	Z
IJA R	R+1→A, skip if zero	_
IJ R	R+1→R, skip if zero	_
MOV R, A	A→R	_
MOV A, R	R→A	Z
MOV R, R	R→R	Z
OR A, R	A∨VR→A	Z
OR R, A	A∨VR→R	Z
SUB A, R	R–A→A	Z, C, DC
SUB R, A	R–A→R	Z, C, DC
XOR A, R	$A \oplus R \rightarrow A$	Z
XOR R, A	A⊕R→R	Z
IR R	I OCR→A	-
IW R	A→ I OCR	-
CTR	CONT→A	-
CTW	A→CONT	-
BTC R, b	0→R (b)	_

ShenZhen ChipSourceTek Technology Co.,Ltd.

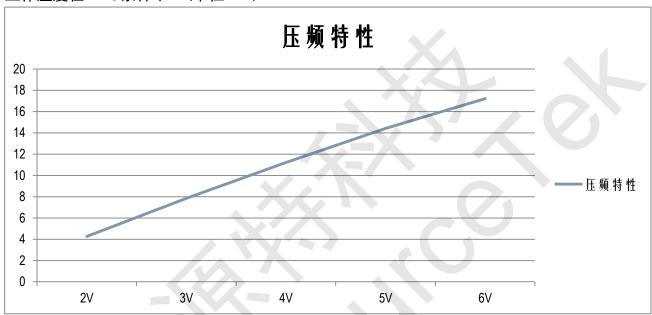
BTS R, b	1→R(b)	_	
JBTC R, b	if R(b)=0, skip	_	
JBTS R, b	if R(b)=1, skip	_	
LCR R	$R(n) \rightarrow R(n+1), R(7) \rightarrow C, C \rightarrow R(0)$	С	
LCA R	$R(n) \rightarrow A(n+1), R(7) \rightarrow C, C \rightarrow A(0)$	С	
RCR R	$R(n) \rightarrow R(n-1), R(0) \rightarrow C, C \rightarrow R(7)$	С	
RCA R	$R(n) \rightarrow A(n-1), R(0) \rightarrow C, C \rightarrow A(7)$	С	
SWAP R	$R(0-3) \leftrightarrow R(4-7)$	- 1	
SWAPA R	$R(0-3) \rightarrow A(4-7), R(4-7) \rightarrow A(0-3)$		
ADD A, k	A+k→A	Z, C, DC	
AND A, k	A&k→A	Z	
MOV A, k	k→A	-	
OR A, k	$A \lor k \rightarrow A$	Z	
SUB A, k	k-A→A	Z, C, DC	
XOR A, k	A⊕k→A	Z	
CALL k	$PC+1 \rightarrow [SP], (Page, k) \rightarrow PC$	-	
DI	禁止中断	-	
EI	使能中断	-	
JMP k	K (Page, k) → PC	-	
NOP	空指令	-	
RET	[堆栈顶端]→PC	-	
RETI	[堆栈顶端]→PC, 使能中断	-	
RETL k	k→A, [堆栈顶端]→PC	-	
SLEEP	0→WDT, 振荡器停止振荡 (睡眠模式)	T, P	
CWDT	CWDT 0→WDT		

6. ZHT2501电气特性

6.1 极限参数

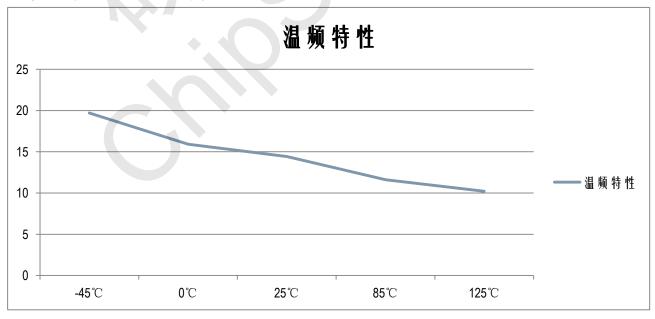
6.2 直流电气特性

(٧๗ =5٧, 工作温度=25℃, 除非另有情况说明)

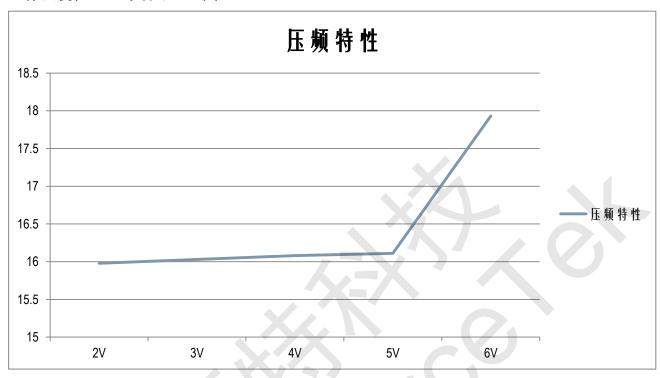

符号	参数说明	条件	最小	典型	最大	单位
IRC1	IRC1(校正后)	OPTION 选择 8MHz	-	8	-	MHz
IRC2	IRC2(校正后)	OPTION 选择 910KHz		910	-	KHz
I OH1	输出高电平驱动(普通 I0)	Ioh=4. 4V	6	8	10	mA
10H2	输出高电平驱动增强(一级增强)	Ioh=4. 4V	10	12	14	mA
IOL1	输出低电平驱动(普通 IO)	IoI=0. 6V	16	17	18	mA
10L2	输出低电平驱动增强(一级增强)	IoI=0. 6V	20	21	22	mA
10L3	输出低电平驱动增强(二级增强)	1o1=0. 6V	24	26	28	mA
IPH1	上拉电流(除 P63 外)	上拉使能,输入接地	80	100	130	μ Α
IPH2	上拉电流(P63)	上拉使能,输入接地	80	120	130	μ Α
IPD	下拉电流(除 P63 外)	下拉使能,输入接 VDD	45	55	80	μ Α
Isb1	关机电流 1	输入接 VDD,输出悬空, WDT 禁止	_	-	1	μ Α
Isb2	关机电流 2	输入接 VDD,输出悬空, WDT 使能	-	-	6	μ Α
lop2	工作电流 1(VDD=5V)	IRC=8MHz 2clock	-	1. 2	1.5	mA
lop2	工作电流 2(VDD=5V)	IRC=910KHz 2clock	-	0. 2	0. 3	mA
LVR	低电压复位电压	选择 LVR 复位点	VIvr-0. 2	VIvr	VIvr+0. 2	٧

6.3 特性曲线图

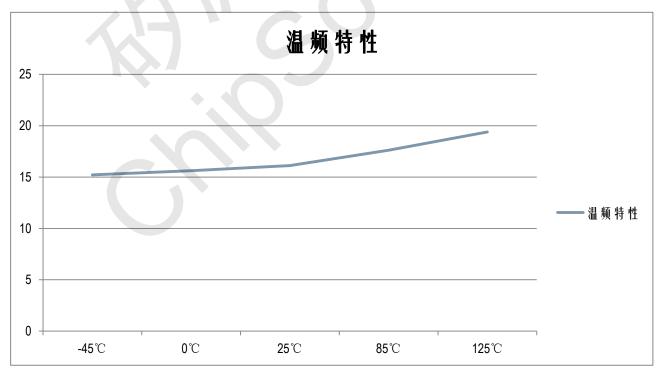
本章所列的曲线图仅作设计参考,其中给出的部分数据可能超出了芯片指定的工作范围, 为保证芯片的正常工作,请严格参照电气特性说明


6.3.1 内部低速 RC 振荡器 1-压频特性曲线

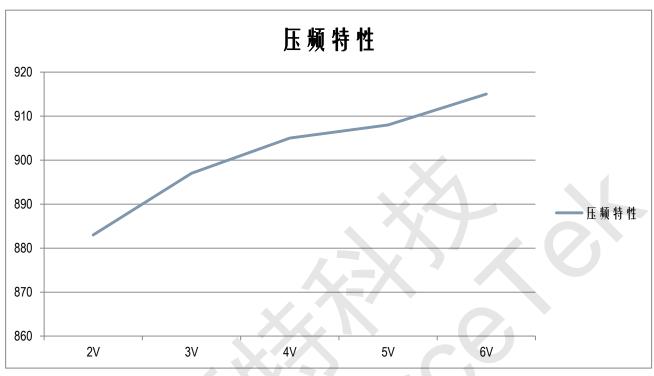
工作温度在 25°C条件下: (单位 KHz)


6.3.2 内部低速 RC 振荡器 1-温频特性曲线

工作电压在 5V 条件下: (单位 KHz)


6.3.3 内部低速 RC 振荡器 2-压频特性曲线

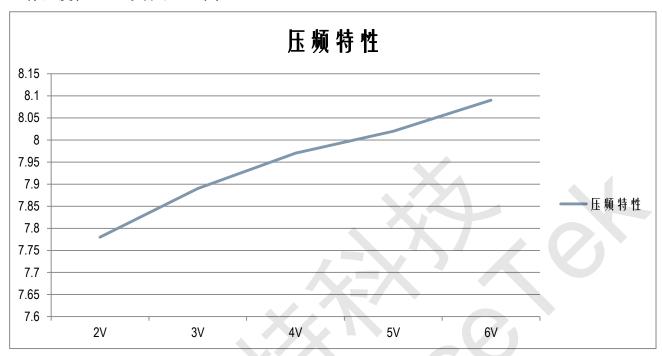
工作温度在 25°C条件下: (单位 KHz)


6.3.4 内部低速 RC 振荡器 2-温频特性曲线

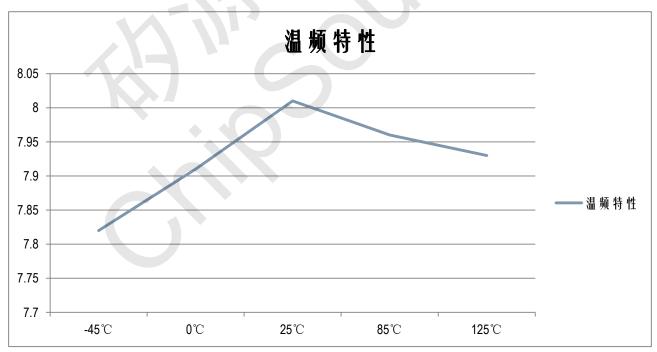
工作电压在 5V 条件下: (单位 KHz)


6.3.5 内部 910KHz RC 振荡器-压频特性曲线

工作温度在 25℃条件下: (单位 KHz)


6.3.6 内部 910KHz RC 振荡器-温频特性曲线

工作电压在 5V 条件下: (单位 KHz)

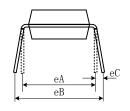

6.3.7 内部 8MHz RC 振荡器-压频特性曲线

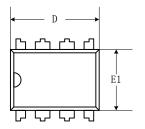
工作温度在 25°C条件下: (单位 Mhz)

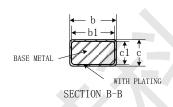
6.3.8 内部 8MHz RC 振荡器-温频特性曲线

工作电压在 5V 条件下: (单位 Mhz)

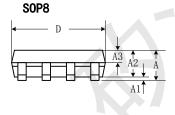


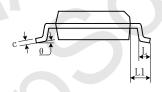

ShenZhen ChipSourceTek Technology Co.,Ltd.

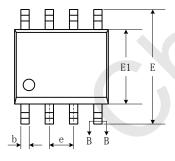

7. ZHT2501封装尺寸

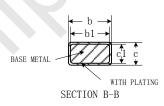

7.1 8PIN 封装尺寸

DIP8









SYMBOL	MILLIMETER			
SIMDUL	MIN	NOM	MAX	
Α	3. 60	3. 80	4. 00	
A 1	0. 51	_	_	
A2	3. 10	3. 30	3. 50	
A3	1. 50	1. 60	1. 70	
b	0. 44	-	0. 53	
b1	0. 43	0. 46	0. 48	
B1		1. 52BSC		
С	0. 25	-	0. 31	
c1	0. 24	0. 25	0. 26	
D	9. 05	9. 25	9. 45	
E1	6. 15	6. 35	6. 55	
е	2. 54BSC			
eA	7. 62BSC			
еВ	7. 62	_	9. 50	
eC	0	-	0. 94	
L	3. 00	_	_	

SYMBOL	MILLIMETER				
SIMDUL	MIN	NOM	MAX		
Α	1	-	1. 77		
A1	0. 08	0. 18	0. 28		
A2	1. 20	1. 40	1. 60		
A3	0. 55	0. 65	0. 75		
b	0. 39	-	0. 48		
b1	0. 38	0. 41	0. 43		
С	0. 21	ı	0. 26		
с1	0. 19	0. 20	0. 21		
D	4. 70	4. 90	5. 10		
E	5. 80	6. 00	6. 20		
E1	3. 70	3. 90	4. 10		
e	1. 27BSC				
L	0.50 0.65 0		0. 80		
L1	1. 05BSC				
θ	0	-	8°		

ShenZhen ChipSourceTek Technology Co.,Ltd.

7.2 6PIN 封装尺寸

封装规格:

Complete I		mm			Inch	
Symbol	MIN	NOM	MAX	MIN	NOR	MAX
A	-//		1. 35		_	0. 053
A1	0. 04		0. 15	0. 002	_	0. 006
A2	1. 00	1. 10	1. 20	0. 039	0. 043	0. 047
А3	0. 55	0. 65	0. 75	0. 022	0. 026	0. 030
b	0. 30	-	0.50	0. 013	_	0. 017
b1	0. 30	0. 40	0. 45	0. 013	0. 016	0. 018
С	0. 08		0. 22	0. 006	_	0. 008
с1	0. 08	0. 13	0. 20	0. 003	0. 005	0. 08
D	2. 72	2. 92	3. 12	0. 107	0. 115	0. 123
E	2. 60	2. 80	3. 00	0. 102	0. 110	0. 118
E1	1. 40	1. 60	1.80	0. 055	0. 063	0. 071
е		0. 95BSC		0. 037BSC		
L	0. 30		0. 60	0. 012	_	0. 024
θ	0	_	8°	0	_	8°