

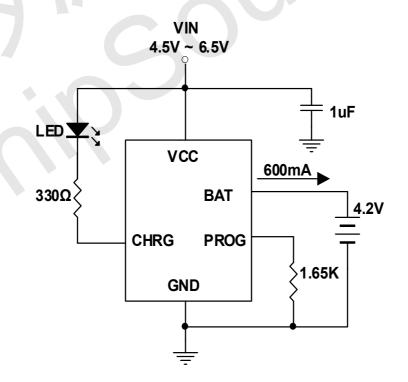
ShenZhen ChipSourceTek Technology Co. , Ltd.

LTH7 (4054)

座充充电管理 IC

一、 概述

LTH7(4054)是恒流/恒压座充充电器芯片,主要应用于单节锂电池充电。无需外接检测电阻,其内部为 MOSFET 结构,因此无需外接反向二极管。


LTH7(4054)在大功率和高环境温度下可以调节充电电流以限制芯片温度。它的充电电压固定在 4.2V, 充电电流可以通过外置一个电阻器进行调节。当达到浮充电压并且充电电流下降到设定电路的 1/10 时,LTH7(4054)自动终止充电过程。当输入电压移开之后,LTH7(4054)自动进入低电流模式,从电池吸取少于 2uA 的电流。当LTH7(4054) 进入待机模式时,供电电流小于 25uA。

LTH7(4054)还可以监控充电电流,具有电压检测、自动循环充电的特性,并且具有一个指示管脚指示充电终止状态和输入电压状态。

二、特性

- ▶ 可达 800mA 的可编程充电电流
- ➤ 无需外接 MOSFET、检测电阻、反向二极管
- ▶ 恒流/恒压模式操作,具有热保护功能
- ▶ 可通过 USB 端口为锂电池充电
- ▶ 具有 1%精度的预设充电电压
- 三、产品应用
 - ▶ 手机、掌上电脑、MP3播放器
 - 蓝牙耳机。
- 四、应用线路

- ▶ 待机模式下电流为 20uA
- ➤ 2.9V 涓流充电电压
- > 软启动限制了浪涌电流
- ➤ 采用 SOT23-5 封装

TEL: +86-0755-27595155 27595165

FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

E-mail: Sales@ChipSourceTek.com

ShenZhen ChipSourceTek Technology Co., Ltd.

LTH7 (4054)

座充充电管理 IC

五、 管脚图及功能说明

六、 绝对最大额定值

参数	符号	额定值	単位
输入电源电压	V _{cc}	7	V
PROG 电压	V_{PROG}	VCC+0.3	V
BAT 电压	V_{BAT}	7	V
CHRG 电压	V_{CHRG}	7	V
BAT 短路		Continuous	
热阻	θ_{JA}	250	°C/W
BAT 电流	I _{BAT}	800	mA
PROG 电流	I _{PROG}	800	μΑ
最高结温	T_{J}	125	$^{\circ}$
储藏温度	T _S	-65 to +125	${\mathbb C}$
焊接温度(不超过 10 秒)		300	${\mathbb C}$

TEL: +86-0755-27595155 27595165

FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

ShenZhen ChipSourceTek Technology Co. , Ltd.

LTH7 (4054)

座充充电管理 IC

七、电气特性 (V_{IN}=5V; T_J=25℃,除非另有说明)

符号	参数	条件	最小值	典型值	最大值	单位
V _{CC}	输入电源电压		4.25		6	V
I _{cc}		充电模式 ⁽³⁾ ,R _{PROG} =10K		110	500	μA
	松》中流中次	待机模式 (充电终止)		70		μA
	输入电源电流	关断模式(R _{PROG} 未连接,		20	40	
		$V_{CC} < V_{BAT}, V_{CC} < V_{UV})$		20	40	μA
V_{FLOAT}	可调输出(浮充)电压	I _{BAT} =30 mA,I _{CHRG} =5 mA	4.20	4.25	4.30	V
I _{BAT}		R _{PROG} = 10k,电流模式	90	110	130	mA
		R _{PROG} = 2k,电流模式		500		mA
	BAT 端电流	VBAT=4.2V,待机模式	0	+/-1	+/-5	μΑ
		关断模式, R _{PROG} 未连接		+/-0.5	+/-5	μA
		休眠模式,VCC=0V		+/-1	+/-5	μΑ
I _{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 10k$		10		mA
V_{TRIKL}	涓流充电阈值电压	$R_{PROG} = 10k$, V_{BAT} Rising	2.8	2.9	3.0	V
V_{UV}	VCC 欠压锁定阈值			3.4		V
V_{UVHYS}	VCC 欠压锁定滞后	From VCC Low to High		100		V
V_{MSD}	手动关断阈值电压	PROG Pin 上升		1.25		V
	于幼犬呦禺祖电压	PROG Pin 下降		1.2		V
V _{ASD}	VCC-VBAT 阈值电压	VCC 从低到高		100		mV
	VCC-VBAT 國祖屯压	VCC 从高到低		30		mV
I _{TERM}	C/10Z 终止电流阈值	$R_{PROG} = 10k^{(4)}$		0.1		mA/mA
	C/102 炎丘屯加國值	$R_{PROG} = 2k$		0.1		mA/mA
V_{PROG}	PROG 端电压	R _{PROG} = 10k,电流模式	0.9	1.03	1.1	V
I _{CHRG}	CHRG 端弱下拉电流	V _{CHRG} = 3V		15		μA
V_{CHRG}	CHRG 端输出低电压	I _{CHRG} = 5mA		0.6		V
ΔV_{RECHRG}	电池阈值电压	V _{FLOAT} - V _{RECHRG}		100		mV
T _{LIM}	热保护温度			120		$^{\circ}$
t _{SS}	软启动时间	$I_{BAT} = 0$ to 1000V/ R_{PROG}		100		μs
t _{RECHRGE}	再充电比较器过滤时间	V _{BAT} High to Low		1		ms
t _{TERM}	终止比较器过滤时间	I _{BAT} Falling Below I _{CHG} /10		1000		μs
I _{PROG}	PROG 端上拉电流			1		μA

注:

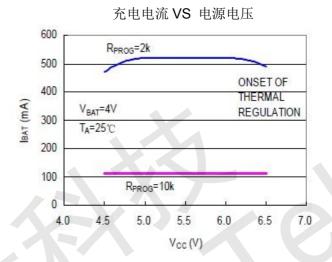
- 1、超出最大工作范围可能会损坏芯片。
- 2、超出器件工作参数极限,不保证其正常功能。
- 3、电源电流包括 PROG 端电流(大约 100uA),不包括通过 BAT 端传输到电池的其他电流(大约 100uA)。
- 4、 充电终止电流一般是设定充电电流的 0.1 倍。

TEL: +86-0755-27595155 27595165

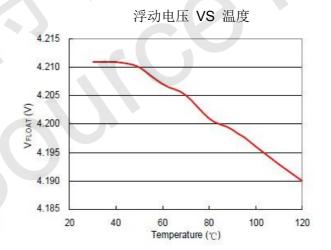
FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

E-mail: Sales@ChipSourceTek.com


ShenZhen ChipSourceTek Technology Co. , Ltd.

LTH7 (4054)


座充充电管理 IC

八、 波形图

浮动电压 VS 电源电压 4.230 4.225 R_{PROG}=10k 4.220 T_A=25℃ 4.215 4.210 4.205 4.200 4.195 4.190 4.185 4.0 4.5 5.0 5.5 6.0 6.5 Vcc (V)

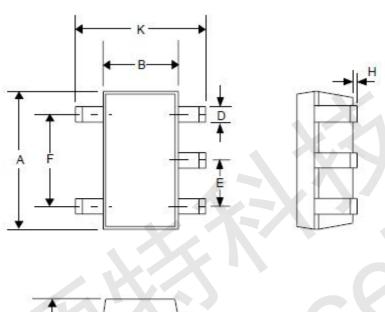
涓流充电电流 VS 电源电压 70 60 R_{PROG}=2k 50 40 V_{BAT}=2.5V (mA) T_A=25℃ 30 20 R_{PROG}=10k 10 0 5.5 V_{cc} (V) 6.5 4.5 6.0 7.0 4.0

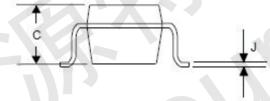
TEL: +86-0755-27595155 27595165

FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

E-mail: Sales@ChipSourceTek.com


ShenZhen ChipSourceTek Technology Co. , Ltd.


LTH7 (4054)

座充充电管理 IC

九、 封装尺寸图

SOT23-5

规格								
D.+	英寸		毫米					
尺寸	最小值	最大值	最小值	最大值				
Α	0.110	0.120	2.80	3.05				
В	0.059	0.070	1.50	1.75				
С	0.036	0.051	0.90	1.30				
D	0.014	0.020	0.35	0.50				
E		0.037	_	0.95				
F		0.075	_	1.90				
Н	_	0.006	_	0.15				
J	0.0035	0.008	0.090	0.20				
K	0.102	0.118	2.60	3.00				

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

E-mail: Sales@ChipSourceTek.com