保持运算放大器输出在零伏或零伏以下“活动”、生成对称输出信号以及处理双极性模拟输入,都是需要几毫安负电压轨的设计情况的示例。图 1显示了基于古老的 x4053 系列三重 CMOS SPDT 开关的简单逆变器设计,该设计可高效、准确地反转正电压轨并实现降压。
这是它的工作原理。
U1a和U1b与C2结合形成反相电容器电荷泵,将电荷传输到滤波电容器C3。电荷转移发生在一个周期中,该周期以 C2 通过 U1a 充电到 V+ 开始,然后通过 U1b 将 C2 部分放电到 C3 来完成。在 U1c 施密特触发器型振荡器的控制下,泵浦频率约为 100 kHz,因此每 10s 就会发生电荷转移。注意 U1c 周围通过 R3 的正反馈和通过 R1、R2 和 C1 的反向反馈。
生成的(近似)振荡器波形(Vc1 和 U1c Vpin9)如图 2所示。'

图 2由 U1c 施密特触发振荡器生成的 100kHz 定时信号。
xx4053 系列有保证的先断后合开关可限度地提高效率,同时限度地降低噪声。当 V+ = 5 V 时,开关导通电阻随着 Vout 的降低而固有增加,从而将短路输出故障电流降低至约 20 mA。加电时启动需要大约 5 毫秒。
空载功耗小于 500 W,大致平均分配在 U1 和振荡器 RC 网络之间。当 Vout 轻载时,它将地接近 -1.0 x V+。在负载下,它会以~160 mV/mA的速度下降。
如果需要在更高的 V+ 输入(高达 10 V)下运行,则可以采用金属栅极 CD4053B。当然,电容器的额定电压需要相应更高。
免责声明: 本文章转自其它平台,并不代表本站观点及立场。若有侵权或异议,请联系我们删除。谢谢! Disclaimer: This article is reproduced from other platforms and does not represent the views or positions of this website. If there is any infringement or objection, please contact us to delete it. thank you! 矽源特科技ChipSourceTek |